
1

ÿþýüþûúùø÷öûýõ÷ôó
�ûøôûýú��ýú�üþ��ô÷�øú�øüú�ûõû�ý��ú÷øú
�ø��ý��ô÷�øú�õõþý�ø�ûú�øüú�û�þý÷ôó

Building a distributed intrusion
detection system with Perl

Diego Zamboni
CERIAS, Purdue University

zamboni@cerias.purdue.edu

What is AAFID?

• Autonomous Agents for Intrusion
Detection

• Architecture for distributed monitoring
• Test bed for intrusion detection

techniques and algorithms
• Basis for a prototype implementation

System Architecture

D

E

C

B

A UIAgents

Monitors

Transceivers

Control

Data

Filters

System architecture

UI A

B

C

D

E

Some design objectives

• All entities must run both as stand-alone
programs and as loadable modules

• All infrastructure functionality must be
provided by base entities

• Different types of entities have different
functionality requirements

Why Perl?

• Ease of prototyping
• Portability

2

Our object hierarchy
(AAFID::)

Entity

ControllerEntity

MonitorTransceiver

Log

Message

Config

Constants

Common

Reactor Comm

Event handling/communication

Filter

Individual
filters

Agent

Individual
agents

Event handler

• Comm::Reactor implements a general
event handler

• Can react to file, time and signal events
• Arbitrary callbacks (code refs)
• Implemented using IO::Select
• Using class methods instead of instance

methods caused some nasty bugs

Cool uses of Perl #1:
defining new commands

• Entities react to commands
• Command CMD is defined by a

subroutine called command_CMD

• New commands can be added with very
little effort just by defining the
appropriate subroutines

Cool uses of Perl #2:
named parameters

• Entity objects are implemened with
hashes

• Entity parameters are stored as
elements in that hash

• Each entity is tied to a hash to allow
easy access to parameters
($Params{param} instead of
$self->getParameter(’param’))

Cool uses of Perl #3:
hash syntax

• Allows having a very general “data” field
in AAFID messages:
command add_fs … FS=>”/”, Limit=>85

• Data::Dumper and eval do all the work
for generating and interpreting data
fields

• Eval: potential security problems

Cool uses of Perl #4:
code generation tool

• Reads a description file, writes Perl code
• Inserts # line “file” comments to

produce meaningful error messages
• Allows definition of new commands with

named parameters

3

A very simple agent
NAME: CheckRoot
AUTHOR: Diego Zamboni
DESCRIPTION: Check root dir permissions
VERSION: 0.1
PERIOD: 10
CHECK:

if (-w “/”) {
return(10,”Root dir is writable”);

else {
return(0,”Everything ok”);

}

Communication
mechanisms

• Transceiver-agent: Unix pipes
• Monitor-transceiver: TCP

• Both are transparently used as
IO::Handles (at least in Unix)

• All communications are encapsulated,
so they are easy to replace or upgrade

Other aspects

• Graphical User Interface
– Uses Tk package
– Very early stages
– Subject for a lot of future research

AAFID
GUI

AAFID
GUI

Some modules we used

• IO::{Handle,Select,Socket,File}
• Data::Dumper
• Resources
• Log::Topics
• Tk

4

Did Perl live up to our
original expectations?

• Ease of prototyping
– Yes: we had the first working entities

in ~2 weeks
• Portability

– So-so: we are still struggling with NT

Some lessons learned
(1)

• Perl made it easy to build a large
system quickly

• Perl was the right choice for most
entities (data manipulation)

• Object-oriented design made growth
much easier

Some lessons learned
(2)

• Big resource usage for our needs
– We need tens, maybe hundreds of

agents per host
• Even within the Unix domain, some

things differ (Linux/Solaris, for example)

Some things we learned
(3)

• It’s difficult to debug a distributed
system
– A detailed “debug log” mode helps

• In a big system, Perl requires
programmers to be very careful

Current state

• AAFID2 is now in its second public
release

• http://www.cerias.purdue.edu/
projects/aafid/

• Runs on 5.005 (haven’t tested in 5.6.0)

The future

• Try using threads instead of separate
processes

• Combine Perl components with low-
level sensors

• Fix all those bugs

5

ÿþýüþûúùø÷öûýõ÷ôó
�ûøôûýú��ýú�üþ��ô÷�øú�øüú�ûõû�ý��ú÷øú
�ø��ý��ô÷�øú�õõþý�ø�ûú�øüú�û�þý÷ôó

Thank you

