
1

ÿþýüþûúùø÷öûýõ÷ôó
�ûøôûýú��ýú�üþ��ô÷�øú�øüú�ûõû�ý��ú÷øú
�ø��ý��ô÷�øú�õõþý�ø�ûú�øüú�û�þý÷ôó

Embedded sensors for intrusion
detection

Design and implementation issues

Diego Zamboni
CERIAS, Purdue University

zamboni@cerias.purdue.edu

What do we mean by
“embedded sensors”?

• A piece of code added to a program
• It looks for attempts to exploit security

problems
char buf[256];
. . .
strcpy(buf,getenv(“HOME”));
. . .

char buf[256];
. . .
{ if(strlen(getenv(“HOME”))

>256) {
log(“buffer overflow”);

} }
strcpy(buf,getenv(“HOME”));
. . .

Benefits of embedded
sensors

• Check at the target
• Short and simple to test
• Very low overhead
• Almost impossible to disable!
• Can be used to build a “universal

honeypot”

Universal honeypot

• Sensors can detect attacks as well as
successful penetrations

• Sensors can detect attacks on
vulnerabilities that no longer exist on the
system

• Sensors can detect attacks on
vulnerabilities that never existed on the
system

Drawbacks of
embedded sensors

• Implementation is completely OS- and
architecture-dependent

• You have to understand and modify
other people’s code

• Badly implemented sensors can wreak
havoc

• It’s not always obvious where to put
them and how to implement them

Our implementation
platform

• OpenBSD
• Main reasons:

– Single, centralized source tree
– Most problems don’t exist anymore

• Started with version 2.6, moved to 2.7
• Currently using Intel architecture



2

Our methodology for
implementing sensors

• Use the CVE (version 20000712)
• For now, working on specific areas or

programs (e.g. sendmail)
• For each entry, collect information,

implement and test sensor
• Lather, rinse, repeat

Supporting infrastructure
for sensors

• Reporting mechanism
– A system call
– A device file (for reading messages)
– A corresponding library for both

writing and reading messages

Sensors we have
implemented

• Network attacks
– Land, Teardrop, SYN flood, ping-of-

death, Smurf, Fraggle, echo-chargen,
WinNuke and others

• Sendmail attacks
– MIME buffer overflows, debug/decode

attacks, other root exploits

Are they any good?

• No false negatives (100% detection
rate)

• Very few false positives (only with half
of one sensor - Fraggle as reflector)

• No noticeable impact on the host

Some sensor statistics

• Added or changed 2034 lines total
• Of these, 193 are sensor code
• Average of 7.72 LOC per sensor
• Most sensors (60%) are 1-5 lines

Observations about CVE

• Useful as a checklist and for the
references

• Bad entries
– Entries that correspond to more than

one specific attack
– Badly-defined entries



3

Observations about
sensor design

• Some are already built into the system,
we just add the notification

• Some attacks are difficult to detect by
program behavior alone

• What we have done is use heuristics
(e.g. look at data)

• Other ideas?

Our current state

• Using OpenBSD 2.7
• Have implemented 25 sensors

The future

• Plan to have 100+ sensors by the end
of the year

• Then – testing against new attacks
• After that – analysis, see what we can

learn from the behavior of the sensors
• Finally – graduate?

Diego Zamboni
CERIAS, Purdue University

zamboni@cerias.purdue.edu

Sample sensor –
vacation program

close(pvect[0]);

close(pvect[1]);

close(fileno(mfp));

#ifdef ESP_CVE_1999_0057

if (from[0] == '-' && from[1] == 'C') {

esp_logf("CVE-1999-0057: from='%s'\n", from);

}

#endif

execl(_PATH_SENDMAIL, "sendmail", "-f", myname,

"--", from, NULL);


