
An Architecture for Intrusion Detection using Autonomous Agents∗

Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez,
David Isacoff, Eugene Spafford, Diego Zamboni†

COAST Laboratory
Purdue University

West Lafayette, IN 47907-1398

E-mail:{balasujs,jgarcia,isacoff,spaf,zamboni }@cs.purdue.edu

Abstract

The Intrusion Detection System architectures commonly
used in commercial and research systems have a number
of problems that limit their configurability, scalability or
efficiency. The most common shortcoming in the existing
architectures is that they are built around a single mono-
lithic entity that does most of the data collection and pro-
cessing. In this paper, we review our architecture for a dis-
tributed Intrusion Detection System based on multiple in-
dependent entities working collectively. We call these en-
tities Autonomous Agents. This approach solves some of
the problems previously mentioned. We present the moti-
vation and description of the approach, partial results ob-
tained from an early prototype, a discussion of design and
implementation issues, and directions for future work.

1. Background and motivation

We start by introducing some concepts that are used
throughout this paper, as well as describing the limitations
that we see in existing Intrusion Detection Systems, and
why a distributed approach using autonomous agents can
help in overcoming those limitations.

1.1. Intrusion Detection

Intrusion detection (ID) is defined [15] as “the problem
of identifying individuals who are using a computer sys-
tem without authorization (i.e., ‘crackers’) and those who
have legitimate access to the system but are abusing their

∗Portions of this work were supported by contract MDA904-97-6-0176
from the Maryland Procurement Office, and by sponsors of the COAST
Laboratory. This paper was published in Proceedings of the Fourteenth
Annual Computer Security Applications Conference.
†Main author and contact person for questions concerning this paper.

privileges (i.e., the ‘insider threat’).” For our work, we
add to this definition the identification ofattemptsto use
a computer system without authorization or to abuse exist-
ing privileges. Thus, our definition matches the one given
in [8], where an intrusion is defined as “any set of actions
that attempt to compromise the integrity, confidentiality, or
availability of a resource.”

We also use the broad categorization of models of intru-
sion detection described in [15]:

Misuse detection model:Detection is performed by look-
ing for the exploitation of known weak points in the
system, which can be described by a specific pattern
or sequence of events or data.

Anomaly detection model: Detection is performed by de-
tecting changes in the patterns of utilization or behav-
ior of the system. This is the type of intrusion detec-
tion described in [5]. It is performed by building a
model that contains metrics derived from system op-
eration and flagging as intrusive any observations that
have a significant deviation from the model.

An Intrusion Detection System (IDS) is a computer
program that attempts to perform ID by either misuse or
anomaly detection, or a combination of techniques. An IDS
should preferably perform its task in real time [15].

IDSs are usually classified [15] as host-based or
network-based. Host-based systems base their decisions
on information obtained from a single host (usually audit
trails), while network-based systems obtain data by moni-
toring the traffic of information in the network to which the
hosts are connected.

Notice that the definition of an IDS does not include pre-
venting the intrusion from occurring, only detecting it and
reporting the intrusion to an operator.



1.2. Desirable characteristics of an IDS

In [4], the following characteristics are identified as de-
sirable for an IDS:

• It must run continuallywith minimal human supervi-
sion.

• It must befault tolerantin the sense that it must be able
to recover from system crashes and reinitializations.

• It must resist subversion. The IDS must be able to
monitor itself and detect if it has been modified by an
attacker.

• It must impose aminimal overheadon the system
where it is running.

• It must be able to be configured according to the secu-
rity policies of the system that is being monitored.

• It must be able to adapt to changes in system and user
behavior over time.

As the number of systems to be monitored increases and
the chances of attacks increase we also consider the follow-
ing characteristics as desirable:

• It must be able toscaleto monitor a large number of
hosts.

• It must providegraceful degradation of servicein the
sense that if some components of the IDS stop working
for any reason, the rest of them should be affected as
little as possible.

• It must allowdynamic reconfiguration, this is, the abil-
ity to reconfigur the IDS without having to restart it.

1.3. Limitations of existing IDS

Many of the existing network- and host-based IDSs [9,
8] perform data collection and analysis centrally using a
monolithic architecture. By this we mean that the data is
collected by a single host, either from audit trails or by
monitoring packets in a network, and analyzed by a sin-
gle module using different techniques. Other IDSs [10, 20]
perform distributed data collection (and some preprocess-
ing) by using modules distributed in the hosts that are being
monitored, but the collected data is still shipped to a cen-
tral location where it is analyzed by a monolithic engine.
A good review of systems that take both approaches is pre-
sented in [15].

There are a number of problems with these architectures:

• The central analyzer is a single point of failure. If
an intruder can somehow prevent it from working, the
whole network is without protection.

• Scalability is limited. Processing all the information
at a single host implies a limit on the size of the net-
work that can be monitored. After that limit the central
analyzer becomes unable to keep up with the flow of
information. Distributed data collection can also cause
problems with excessive data traffic in the network.

• It is difficult to reconfigure or add capabilities to the
IDS. Changes and additions are usually done by edit-
ing a configuration file, adding an entry to a table or
installing a new module.

• Analysis of network data can be flawed. As shown
in [18], performing collection of network data in a host
other than the one to which the data is destined can pro-
vide the attacker the possibility of performing Insertion
and Evasion attacks.

Other IDSs have been designed to do distributed collec-
tion and analysis of information. A hierarchical system is
described in [22], and [27] describes a cooperative system
without a central authority. These systems solve some of
the problems mentioned.

1.4. Autonomous Agents

A software agent can be defined as [1]:

. . . a software entity which functions continuously and
autonomously in a particular environment. . . able to
carry out activities in a flexible and intelligent manner
that is responsive to changes in the environment. . .
Ideally, an agent that functions continuously. . . would
be able to learn from its experience. In addition, we
expect an agent that inhabits an environment with other
agents and processes to be able to communicate and
cooperate with them. . .

In our context, we define anautonomous agent(hence-
forth agent) as a software agent that performs a certain se-
curity monitoring function at a host.

We term the agents asautonomousbecause they are
independently-running entities (i.e., their execution is
scheduled only by the operating system, and not by other
process). Agents may or may not need data produced by
other agents to perform their work, but they are still consid-
ered to be autonomous. Additionally, agents may receive
high-level control commands from other entities. This high-
level control does not interfere with our definition of agent
autonomy.

An agent may perform a single very specific function, or
may perform more complex activities.

1.4.1. How the use of Autonomous Agents can improve
the characteristics of an IDS

Because agents are independently-running entities, they can
be added and removed from a system without altering other



components, therefore without having to restart the IDS.
Furthermore, agents may provide mechanisms for reconfig-
uring themselves without having to restart. Additionally,
agents can be tested on their own before introducing them
into a more complex environment. An agent may also be
part of a group of agents that perform different simple func-
tions but that can exchange information and derive more
complex results than any one of them may be able to obtain
on their own.

Thus, we argue that an IDS whose data collection and
analysis elements are agents solves all the problems men-
tioned in Section 1.3:

• If an agent stops working for any reason, one or two
things may happen:

– If the agent is independent and produces results
on its own, only its results will be lost.

– If the data produced by the agent was needed by
other agents, that group of agents may be im-
peded from working properly.

In any case, the damage is restricted to at most a set of
agents.

• By organizing the agents in a hierarchical structure
with multiple layers of agents reducing data and re-
porting it to the upper layers, the system can be made
scalable. This idea is proposed in [3] and is also used
in [22].

• The ability to start and stop agents independently of
each other in the systems that are being monitored adds
the possibility of reconfiguring the IDS (or parts of it)
without having to restart it. If we need to start collect-
ing a new type of data or monitoring for a new kind of
attacks, the appropriate agents can be started without
disturbing the ones that are already running. Similarly,
agents can be stopped or reconfigured without having
to restart the whole IDS.

• If an agent collects network information related to the
host where it is running, we reduce the possibility of
being subject to insertion and evasion attacks by reduc-
ing the number of mismatched assumptions that can be
made.

Additionally, using agents as data collection and analysis
entities provides the following desirable features:

• Because an agent can be programmed arbitrarily, it can
obtain its data from an audit trail, by probing the sys-
tem where it is running, by capturing packets from a
network, or from any other suitable source. Thus, an
IDS built from a collection of agents can cross the tra-
ditional boundaries between host-based and network-
based IDSs.

• Because agents can be stopped and started without dis-
turbing the rest of the IDS, agents can be upgraded to
new versions, and as long as their external interface
remains unchanged (or backward-compatible), other
components need not even know that the agent has
been upgraded.

• If agents are implemented as separated processes on a
host, each agent can be implemented in the program-
ming language that is best suited for the task that it has
to perform.

1.5. Related Work

The ideas of doing distributed intrusion detection and of
having different functions performed by different modules
of the IDS are not new. The GrIDS project at UC Davis [22]
employs modules running in each host to report information
to engines that build a graph representation of activity in the
network and use it to detect possible intrusions. GrIDS also
provides mechanisms to allow third-party security tools to
be used as data sources.

The NADIR system [10] performs distributed data col-
lection by employing the existingservice nodesin Los
Alamos National Laboratory’s Integrated Computer Net-
work (ICN) to collect audit information, which is then ana-
lyzed by a central expert system.

Another approach is presented in [27], in which Coop-
erative Security Managers (CSM) are employed to perform
distributed intrusion detection that does not need a hierar-
chical organization or a central coordinator. Each CSM per-
forms as a local IDS for the host in which it is running, but
can additionally exchange information with other CSMs.
The architecture also allows for CSMs to take reactive ac-
tions when an intrusion is detected. Unclear aspects are
the mechanisms through which CSMs can be updated or
reconfigured, and the intrusion detection mechanisms that
are used locally by each CSM.

The idea of employing widely distributed elements to
perform intrusion detection, by emulating to some extent
the biological immune systems, and by giving the system a
sense of “self”, has also been explored [7].

A distributed sensor system that performs central pro-
cessing and that can be organized in a hierarchical fashion
is described in [11]. This paper proposes a system that is al-
most identical to the original design of our system as done
in [3]. It appeared several years later in the same confer-
ence, but [11] has little in the way of detail, and no citations
to related work that would enable us to determine how their
work may relate to ours.

The EMERALD project [17] proposes a distributed
architecture for intrusion detection that employs entities
called service monitorswhich are deployed to hosts and
perform monitoring functions. They define several layers



of monitors for performing data reduction in a hierarchical
fashion. Monitors can be programmed to perform any func-
tion. The EMERALD project is work in progress, and we
expect it to provide some interesting results.

The approach for using Autonomous Agents in ID that
was the foundation for our work was proposed in [4, 3].
These papers introduced the idea of lightweight, indepen-
dent entities operating in concert for detecting anomalous
activity, prior to most of the approaches mentioned previ-
ously.

2. System architecture

We propose an architecture (which we call AAFID for
Autonomous Agents For Intrusion Detection) for building
IDSs that uses agents as their lowest-level element for data
collection and analysis and employs a hierarchical structure
to allow for scalability as described in Section 1.4.1.

2.1. Overview

A simple example of an IDS that adheres to the AAFID
architecture is shown in Figure 1. This figure shows the
three essential components of the architecture: agents,
transceivers and monitors. We refer to each one of these
components as AAFID entities or simplyentities, and to
the whole IDS constituted by them as anAAFID system.

An AAFID system can be distributed over any number
of hosts in a network. Each host can contain any number
of agentsthat monitor for interesting events occurring in
the host. All the agents in a host report their findings to
a singletransceiver. Transceivers are per-host entities that
oversee the operation of all the agents running in their host.
They exert control over the agents running in that host, and
they have the ability to start, to stop and to send configu-
ration commands to agents. They may also perform data
reduction on the data received from the agents. Finally,
the transceivers report their results to one or moremonitors.
Each monitor oversees the operation of several transceivers.
Monitors have access to network-wide data, therefore they
are able to perform higher-level correlation and detect intru-
sions that involve several hosts. Monitors can be organized
in a hierarchical fashion such that a monitor may in turn
report to a higher-level monitor. Also, a transceiver may re-
port to more than one monitor to provide redundancy and
resistance to the failure of one of the monitors. Ultimately,
a monitor is responsible for providing information and get-
ting control commands from a user interface. This logical
organization, which corresponds to the physical distribution
depicted in Figure 1, is shown in Figure 2.

All the components export an API to communicate with
each other and with the user.

In the following section we describe each component in
greater detail.

2.2. Components of the architecture

2.2.1. Agents

An agent is an independently-running entity that monitors
certain aspects of a host, and reports abnormal or “interest-
ing” behavior to the appropriate transceiver. For example,
an agent could be looking for a large number oftelnet con-
nections to a protected host, and consider the occurrence of
that event as suspicious. The agent would then generate a
report that is sent to the appropriate transceiver. The agent
does not have the authority to directly generate an alarm.
Usually, a transceiver or a monitor will generate an alarm
based on information received from one or more agents.
By combining the reports from different agents, transceivers
build a picture of the status of their host, and monitors build
a picture of the status of the network they are monitoring.

Agents do not communicate directly with each other in
the AAFID architecture. Instead, they send all their mes-
sages to the transceiver. The transceiver decides what to do
with the information based on agent configuration informa-
tion.

Notice that the architecture does not specify any require-
ments or limitations for the functionality of an agent. Thus
it may be a simple program or a complex software sys-
tem (for example, an instance of IDIOT [2]). As long as
the agent produces its output in the appropriate format and
sends it to the transceiver, it can be part of the AAFID sys-
tem.

Internally, agents are also allowed to perform any func-
tions they need. Some possibilities are:

• Agents may learn or evolve over time using genetic
programming, as suggested in [3], or other machine
learning techniques.

• Agents may employ techniques to retain state between
sessions, allowing them to detect long-term attacks or
changes in behavior. Currently, the architecture does
not specify any mechanisms for maintaining persistent
state.

• Agents could migrate from host to host by combining
the AAFID architecture with some existing mobile-
agent architecture.

Agents can be written in any programming language.
Some functionalities (e.g., reporting and communication)
are common to all the agents, and can be provided through
shared libraries or similar mechanisms. Thus, a framework
implementation can provide most of the tools and mech-
anisms necessary to make writing new agents a relatively
simple task.



User
interface

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� �
� �
� �
� �

� �
� �
� �
� �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Transceivers

Monitors
Data flow
Control flow

Agents

HostsLegend

C

E

D

A

B

Figure 1. Physical layout of the components in a sample AAFID system, showing agents, transceivers
and monitors, as well as the communication and control channels between them.

A

E

B

C

D
UI

Figure 2. Logic organization of the same AAFID system showing the communication hierarchy of the
components. The bidirectional arrows represent both the control and data flow between the entities.
Notice that the logical organization is independent of the physical location of the entities in the hosts.

2.2.2. Transceivers

Transceivers are the external communications interface of
each host. They have two roles: control and data process-
ing. For a host to be monitored by an AAFID system, there
must be a transceiver running on that host.

In its control role, a transceiver performs the following
functions:

• Starts and stops agents running in its host. The in-
structions to start and stop agents can come either from
configuration information, from a monitor, or as a re-
sponse to specific events

• Keeps track of the agents that are running in its host.

• Responds to commands issued by its monitor by pro-
viding the appropriate information or performing the



requested actions.

In its data processing role, a transceiver has the following
duties:

• Receives reports generated by the agents running in its
host.

• Does appropriate processing on the information.

• Distributes information to other agents or to a monitor,
as appropriate.

2.2.3. Monitors

Monitors are the highest-level entities in the AAFID archi-
tecture. They also have control and data processing roles
that are similar to those of the transceivers. The main dif-
ference between monitors and transceivers is that a monitor
can control entities that are running in several different hosts
whereas transceivers only control local agents.

In their data processing role, monitors receive the re-
duced information from all the transceivers they control,
and thus can do higher-level correlations, and detect events
that involve several different hosts. Monitors have the
capability to detect events that may be unnoticed by the
transceivers.

In their control role, monitors can receive instructions
from other monitors and they can control transceivers and
other monitors. Additionally, monitors have the ability to
communicate with a user interface and provide the access
point for the whole AAFID system.

If two monitors control the same transceiver, mecha-
nisms have to be employed to ensure consistency of in-
formation and behavior. The AAFID architecture does not
currently specify the mechanisms for achieving this consis-
tency.

2.2.4. User interfaces

The most complex and feature-full IDS can be useless if
it does not have good mechanisms to allow users to interact
with and control it. We have not looked in full detail into the
user interface problem, although some issues are mentioned
in Section 4.4.

The AAFID architecture clearly separates the user inter-
face from the data collection and processing elements. A
user interface has to interact with a monitor and it has to
use the API that the monitor exports to request information
and to provide instructions.

This separation allows different user interface imple-
mentations to be used with an AAFID system. For example,
a Graphical User Interface (GUI) could be used to provide
interactive access to the IDS, while a command-line based
interface could be used in scripts to automate some mainte-
nance and reporting functions.

2.3. Communication mechanisms

The transmission of messages between entities is a cen-
tral part of the functionality of an AAFID system. Although
the AAFID architecture does not specify which communi-
cation mechanisms are to be used, there is a minimum set
of characteristics that we consider desirable. A more de-
tailed discussion of the tradeoffs that have to be made can
be found in Section 4.1.

We consider the following to be some important points
about the communication mechanisms used in an AAFID
system:

• Appropriate mechanisms should be used for different
communication needs (for example, communication
within a host versus inter-host communication).

• The communication mechanisms should be efficient
and reliable in the sense that they should not add sig-
nificantly to the communications load imposed by reg-
ular host activities, and provide reasonable expecta-
tions of messages getting to their destination quickly
and without alterations.

• The communication mechanisms should be secure in
the sense that they should be resistant to attempts of
rendering it unusable by flooding or overloading, and
provide some kind of authentication and confidential-
ity mechanism.

The topics of secure communications, secure distributed
computation and security in autonomous agents have been
already studied [6, 12], and possibly some previous work
can be used in AAFID implementations.

2.4. Other ideas and possible components

In the course of designing our system architecture, we
explored some alternate architectural components. We
briefly discuss two such components. These components
are not currently part of the AAFID architecture.

2.4.1. The Simple Network Management Protocol
(SNMP)

The Simple Network Management Protocol (SNMP) [19] is
a protocol designed to facilitate the exchange of manage-
ment information between network devices. The SNMP
model comprises aNetwork Management System(NMS)
andManaged Devices. An SNMP Agent runs in each man-
aged device, and an SNMP Manager operates in the ma-
chines from which the network is going to be monitored.
The Management Information Base (MIB) is a database that
specifies variables that are maintained by the agents, and
that the manager can query or set [24].



The SNMP model can be used to implement the AAFID
architecture. The transceivers can be implemented as
SNMP agents, while the functionality of the monitor can be
achieved by the SNMP NMS. The autonomous agents (not
to be confused with the SNMP agents) can be given unique
identifiers in a specially designed MIB. These object iden-
tifiers can provide access to a set of parameters within the
MIB whose values represent the state of the autonomous
agent and that can be retrieved or set by the NMS. The
transceivers could communicate with the monitor by raising
SNMP traps. The autonomous agents communicate with
the transceiver by setting their corresponding data values.

Using SNMP to implement the AAFID architecture
might be an interesting possibility. However, there are a
number of significant issues that would have to be further
investigated, including security, fault tolerance and ease of
extension and deployment of the implementation.

2.4.2. Audit Router

System audit trails are an essential source of information for
an IDS. However, there are problems that arise when many
different entities try to access them simultaneously. It may
be useful to have a mechanism that helps in distributing the
information to the entities that need it.

The first and simplest scheme is to pass all the audit
records to all the agents. The problem with this scheme
is that every agent must process the whole audit trail, which
is probably a waste of processing resources.

Another possibility is to embed the agents within a cen-
tral audit server that passes appropriate records to appropri-
ate agents. A version of this approach has successfully been
used in the IDIOT IDS [14, 2]. One problem is that this
model only supports the push mechanism of client-server
interaction. This means that the server sends events to the
agents as they become available. If an agent is not ready to
receive events, those events are lost.

We propose the use of another mechanism that uses a
centralaudit router. The central audit router maintains a
database of agents and the audit classes that they require,
and implements support routines such as buffer manage-
ment. Agents need to register with the router and give it
information regarding the types of audit records that they
require. When doing so they receive a handle in return. The
agent can then simply read from the handle whenever it is
ready to receive new events. This technique implements the
pull model of computing. The downside is that the audit
router becomes more complex because of the need to man-
age buffers and other associated tasks.

This model could also support the push model by allow-
ing agents to specify a callback function that can be invoked
by the audit router when certain types of data are received.

2.5. Disadvantages of the AAFID architecture

We have identified several shortcomings in the AAFID
architecture that we propose.

• In their control role, monitors are single points of fail-
ure. If a monitor stops working, all the transceivers
that it controls stop producing useful information. This
can be solved through a hierarchical structure where
the failure of a monitor would be noticed by higher-
level monitors, and measures would be taken to start
a new monitor and examine the situation that caused
the original one to fail. Another possibility is to estab-
lish redundant monitors that look over the same set of
transceivers so that if one of them fails, the other can
take over without interrupting its operation.

• If duplicated monitors are used to provide redundancy,
mechanisms have to be used to ensure that redundant
monitors will keep the same information, will obtain
the same results, and will not interfere with the normal
operation of the IDS.

• The AAFID architecture currently does not specify
access-control mechanisms to allow for different users
to have different levels of access to the IDS. This is
an issue that will need to be addressed at the monitor,
transceiver and agent levels as well as in the user inter-
faces.

• Detection of intrusions at the monitor level is delayed
until all the necessary information gets there from the
agents and transceivers. This is a problem common to
distributed IDSs.

3. Implementations

We have developed two prototypes based on the AAFID
architecture, and we are currently in the process of improv-
ing those implementations as well as developing new ones.

3.1. First prototype

The first prototype we built was programmed in a com-
bination of Perl [26], Tcl/Tk [16] and C [13], and was in-
tended as a proof of concept for the architecture. In this
implementation, which we call AAFID1, much of the be-
havior of the components was hard-coded and it was not
extremely configurable. It used UDP as the inter-host com-
munication mechanism and Solaris message queues as the
intra-host communication mechanism. This prototype al-
lowed us to:

• Show that the AAFID architecture could work for do-
ing distributed detection of anomalous events.



• Gain some experience in writing agents that allowed
us to identify important functionality that is needed for
all agents.

• Identify some design issues that had to be improved.
For example, this first prototype integrates the moni-
tor and the GUI in a single program, which proved to
be a limitation because it does not allow to organize
monitors in a hierarchical fashion.

3.2. Second prototype

Drawing from the experiences obtained with the first
prototype we developed a second one from scratch, which
we call AAFID2. This prototype is written exclusively in
Perl, which has the advantage of making it easy to port to
other architectures at the expense of some performance loss.
The main objective of this implementation is to allow for
extensive testing of the architecture, therefore emphasis has
been made in its ease of use, configurability and extensibil-
ity. Some of the major contributions of this new implemen-
tation are:

• Increased portability because it is written completely
in Perl.

• Implementation of an infrastructure that provides all
the base services necessary for developing new enti-
ties.

• Definition of an internal API for developing new
agents.

• Clear separation of communication mechanism inter-
nals and other platform-dependent elements.

• Clear definition of each entity as an object, and of the
relationships between the different classes of objects.

• Different execution modes for entities, which facilitate
developing, testing and debuggging new entities.

• Definition of an extensible message format that can be
extended to represent different types of information.

• Separation of the monitor and the user interface.

This implementation is our current test bed for the ar-
chitecture and is the one under which we are developing
new agents and exploring new communication and data-
reduction mechanisms. A much more detailed description
of AAFID2 can be found in [21].

3.3. Low-level implementations

The first two prototypes have helped us in refining the
architecture as well as identifying needs and problems that
have to be solved. However, not much emphasis has yet
been placed in performance issues because the prototypes

have been mostly implemented in high-level scripting lan-
guages such as Perl, which have large memory and CPU
footprints. For this reason, as the architecture design starts
to stabilize, we have started to work in porting the architec-
ture to lower system levels. In particular, we are currently
working on integrating components of the AAFID archi-
tecture into the Unix kernel. We are currently working on
incorporating additional auditing and monitoring capabili-
ties into the Linux kernel, and will possibly work also with
Solaris, BSD/OS and Windows NT.

4. Experiences, comments and design issues

Through the experiences obtained with the design and
implementations of the AAFID architecture (see Section 3
and [21]), we have identified a number of issues that should
be subject of future work. They are discussed in this section.

4.1. Communication and Scalability

To reduce the overhead imposed by the IDS, the com-
munication mechanisms employed have to be as efficient as
possible.

We can classify the communication needs of the IDS in
two major groups: intra-host communication (between pro-
cesses inside a single host) and inter-host communication
(between processes running in different hosts).

4.1.1. Intra-host communication

Although the general inter-host communication mecha-
nisms may be used for communication within the same
host, we think that intra-host communication should be op-
timized to make use of the fact that the entities involved are
in the same host.

For our IDS architecture, we have identified two main
types of intra-host communication that will take place:

• One-to-many communication, as in the case of the
transceiver sending a message to several agents.

• Many-to-one communication, as when the agents send
information to the transceiver.

Keeping these needs in mind, we have considered several
different intra-host communication schemes:

Message queues.This mechanism makes use of the
System-V IPC facilities for establishing message
queues.

The primary shortcoming of message queues is that
the maximum number of messages that can exist in the
system at a given time is usually fairly low. A conse-
quence of this resource limitation is that this method is



vulnerable to denial-of-service attacks. Additionally,
these restrictions place a practical limit on the number
of agents that may be running simultaneously in the
system.

An advantage of this approach is that this is fairly
straightforward to implement and it also provides a
mechanism to prioritize the messages so that agent
messages can be processed immediately.

This approach was used for the first prototype, but it
will most likely not be used in future versions of our
system, mainly because of the lack of scalability and
its vulnerability to attacks.

Shared memory. This scheme provides an efficient means
of sharing data between two processes because data is
not actually copied between processes.

This scheme is vulnerable to the same flavor of denial-
of-service as the message queues, because the size of
the shared memory space is fixed. This scheme also
introduces a practical limit on the number of agents
that can be run simultaneously in a system.

The shared memory scheme seems to be adequate for
one-to-many communication. Given this perspective,
a new problem would be how to implement reliable
signaling for the transceiver to notify the agents that
there is new information that they should receive.

Pipes. In traditional Unix implementations , a pipe is a uni-
directional, first-in first-out, unstructured data stream
of fixed maximum size [25]. Data is written to the end
of the pipe and read from the front of the pipe. The
data is removed from the pipe after it is read.

Another common type of pipe is a named pipe or FIFO
(first-in, first-out) file. Although they behave very sim-
ilar to a traditional pipe they differ in the way that they
are created and accessed. One major difference is that
a FIFO is bidirectional.

Either type of pipe could be used for communication
between entities running on the same host. One of the
disadvantages of either type of pipe is that there is an
internal limit on the volume of data that can be put into
a pipe if the reading process does not extract it.

Using pipes as a communication device also has sev-
eral benefits. They are relatively simple to implement
and every modern version of UNIX implements both
types of pipes. Because pipes are accessed through
file handles they have extreme flexibility in how the
components of a distributed system can be used and
interconnected.

Independently of the communication scheme used, the
IDS needs access control in the communication channels.

All the mechanisms mentioned have the ability of perform-
ing access control by the following means:

• For message queues and shared memory, the process
that sets up the structure establishes its access modes.

• For regular Unix pipes, the pipe is only accessible to
the process that creates it and its children.

• For named pipes, the access control is performed by
the Unix file permissions.

In conclusion, although some of the schemes show some
promise, they still have to be studied carefully before decid-
ing on a particular one. It may be feasible to use more than
one different communication scheme depending on the sit-
uation. The one-to-many and many-to-one distinctions are
clear examples of where this may be possible.

4.1.2. Inter-host communication

The main characteristics that we would like to achieve in a
communication scheme for an IDS are performance, relia-
bility and security.

Performance. For the IDS to operate in real time, mes-
sages must be delivered as quickly as possible from
one part of the system to another, but without over-
loading the network when many agents are running.

Reliability. Whether the messages sent from one host to
another arrive correctly, in order and on time may be
a major concern in an IDS, or it may not. The ques-
tion is: can a single missing message from an agent
make a drastic difference, such as the one between an
intrusion being detected or not? If we can estimate the
maximum amount of lost messages, we might also be
able to give an acceptable estimate of the degradation
in the service.

Security. Privacy and authentication are important needs
for an IDS because some of the messages generated by
the IDS may contain sensitive data about the hosts be-
ing monitored, and unauthorized entities should not be
able to generate messages that are accepted by mon-
itors and transceivers. Usually, cryptography is the
solution to both problems. However, cryptography
comes at a cost in performance and in overhead im-
posed to the systems.

The communication protocol used may also be subject
to denial-of-service attacks in which an attacker makes
it impossible or difficult for messages to get delivered.

The issues mentioned raise a number of questions on
whose answers depend the specific approach that should be
followed. Currently, we see two possible solutions:



• Use an existing protocol (such as UDP or TCP) in a
way that takes into account its weaknesses to provide
the functionality we need.

• Design a new protocol with the needs of the IDS in
mind. Such a protocol may provide reliable transmis-
sion, low overhead, and security mechanisms.

After expressing our concerns regarding inter-host com-
munication, particularly those related to performance and
scalability, we come to a more fundamental question: do
we really need to worry? In particular, will we ever get to a
point when we have thousands of hosts communicating? It
can be argued that if an appropriate hierarchical organiza-
tion is used that may never happen. For example, if the sys-
tem is structured such that only one subnetwork reports to
a single monitor and those monitors in turn report to higher
level monitors, the problem may not be as relevant as the
previous discussion suggested. In this case, secure and reli-
able communication would be the priority.

Finally, the level of efficiency required from the com-
munications protocol depends on the level of data reduction
that can be achieved. If the data-reduction schemes are such
that the amount of information that is actually sent through
the network is limited, then efficiency may become a sec-
ondary concern.

4.2. Impact on host performance

In the first implementations of the AAFID architecture,
all the entities are implemented as separate processes. How-
ever, much of the data that are being collected and analyzed
are generated in the kernel (for example, user login infor-
mation, process accounting and network connection estab-
lishment). This means that every time a system action has to
be logged or analyzed, the information has to be transferred
from kernel space to user space, causing a context switch,
and increasing the load imposed on the system by the IDS.
As the number of agents running on a host increases, the
load overhead caused by them may start to impact normal
use of the host.

One approach to reduce the overhead caused by the IDS
is to write all the components in a compiled language, such
as C, instead of in an interpreted language such as Perl. This
would reduce the memory and CPU usage, but would not
solve the context-switching problem, or the overhead de-
rived from having many separate processes running.

A further step would be to use a language that supports
multithreading, and implement each agent as a separate
thread instead of a separate process. This may further re-
duce the per-agent overhead, but still would not address the
context-switching problem.

The lowest level that we could achieve would be to in-
tegrate some of the components in the Unix kernel. Doing
this would have several benefits:

• A context switch is prevented, because the agent would
be running within the kernel itself.

• The information is registered and processed very close
to where it is produced, reducing the possibility of
it being modified by an attacker before it gets to the
agent.

• It becomes harder for an intruder to tamper with the
agents.

The transceivers could also be built into the kernel. This
way, the data would never have to be transferred outside
the kernel until the transceiver decides to send them to a
monitor for further processing, or for making a notification.

The approach just described also has the following dis-
advantages:

• Building entities as kernel components essentially de-
stroys the portability of the agents.

• An entity that misbehaves can do much more damage
if it is running in the kernel.

• Entities in the kernel can have a large impact in the
host behavior by slowing down fundamental opera-
tions (e.g. accesses to disk, memory and kernel data
structures) or by disrupting timing in critical low-level
operations (such as disk accesses).

• The resources that are available for entities in the ker-
nel are very limited and may be insufficient for per-
forming useful actions. For example, an agent that
monitors IP packets may need a large amount of mem-
ory to be able to to keep enough state information to
monitor all of the events necessary to detect a SYN-
flood attack. Preliminary work indicates that it is prob-
ably not possible to develop distinct independent ker-
nel agents that will perform any complex tasks unless
they are tightly coupled into the kernel code itself.

4.3. Data processing and reduction

To make the agents as lightweight as possible, they
should be little more than a forwarding element that sends
data to the transceiver, which in turn merges the data com-
ing from all the agents and forwards them to the appropriate
monitor where everything is processed and the appropriate
actions are taken. However, this technique can create a high
amount of network traffic, which limits the scalability of the
system.

The counterpart is to move computation load from the
monitor to the transceivers and agents. This can be taken to
the extreme of making each transceiver a local ID system
on its own which communicates to the monitors as part of
a larger global ID system. Unfortunately, this has an im-
pact on the hosts being monitored because local computa-



tion will take away computing cycles from the real applica-
tions of the hosts.

A related problem is to decide where the state of the
IDS is kept. In the centralized approach, all state is kept
in the central monitor. Therefore, if that host is taken down
or somehow compromised or destroyed, the state of all the
hosts that depend on that monitor may be lost. On the other
hand, if each host has its own processing engine, the state
information is distributed in different hosts, making its com-
plete loss much more difficult. The disadvantage is that
building a consistent picture of the state of the whole IDS
becomes more difficult.

We think that the best approach is to try to find a bal-
ance between the two extremes. More detailed perfor-
mance studies may help in making a decision about how the
computational load can be distributed between the agents,
transceivers, and monitors to maximize the throughput and
scalability of the system without imposing and excessive
load on the hosts and the network.

4.4. User interface

Any IDS can be rendered useless if it does not have good
mechanisms to allow users to control and monitor it. In our
case, the user interface has to deal with a common prob-
lem: how to interface a high-speed, distributed, continuous-
running computer system with the human user, which can-
not quickly analyze large volumes of data and cannot be
on-guard 24 hours a day. It is a problem that involves is-
sues ranging from data formats and storage to GUI design,
including communication, security and consistency.

We think that some of the fundamental issues are:

1. What data do the IDS entities need to provide to give
the user a clear picture of the system.

2. How to efficiently, reliably and consistently get the in-
formation to the user.

3. How to present the information in a useful way. The
interface has to be able to provide the user with multi-
ple levels of detail in a manner that is as easy to use as
possible.

4. How to allow the user to provide feedback and to con-
trol the entities in the system. Ideally, this has to be
done in a way that is efficient, reliable, secure, au-
ditable and manageable.

5. How to make the interface responsive. The user will
want to be able to immediately see the effects of any
changes made and to be told immediately when some-
thing of interest happens.

6. How to keep enough state to provide meaningful infor-
mation to the user.

The issue of user interface is one that we have not studied
in detail yet, and it is likely to be considered for future work.

5. Future work

These are some of the specific points we have identified
as relevant for future work:

• Developing agents.

• Low-level implementations:

• Communication mechanisms.

• Developing transceivers and monitors.

• Semantics of the communication.

• Data reduction.

• Porting to other platforms.

• Deployment and testing.

• Global administration and configuration.

• Reliability and fault tolerance.

6. Conclusions

We propose an architecture for Intrusion Detection Sys-
tems called AAFID, which is based on independent enti-
ties called Autonomous Agents for performing distributed
data collection and analysis. Centralized analysis is done
on a per-host and per-network basis by higher-level entities
called Transceivers and Monitors. The architecture allows
for computation to be performed (and thus, for Intrusion
Detection to happen) at any point where enough informa-
tion is available.

We have demonstrated the feasibility of this architecture
by the implementation of working prototypes.

The AAFID architecture allows data to be collected
from multiple sources, thus being able to combine the best
characteristics of traditional host-based and network-based
IDSs. It apparently also allows to build IDSs that are more
resistant to insertion and evasion attacks [18] than existing
architectures, although no tests have been performed to sup-
port this claim.

Furthermore, the modular characteristics of the architec-
ture allow it to be easily extended, configured and modified,
either by adding new components, or by replacing compo-
nents when they need to be updated. For example, it should
be possible to modify the system to produce messages in
CIDF format [23].

The AAFID architecture faces many of the problems
that have been traditionally in the realm of distributed sys-
tems research, such as scalability, performance and security.
Tradeoffs between efficiency, resource consumption and se-
curity have to be made, and although we may be able to



use results from previous research to implement the mecha-
nisms that AAFID needs, finding the appropriate balance in
the ID context between the different factors is still an open
area for research.

User interface is a big issue for future work. Most of
the work that has been done in Intrusion Detection over the
last few years focuses on how to perform the detections,
but very little has been done in the way of presenting the
information to the user, as well as how to allow the user
to specify policies such that the IDS can understand and
therefore enforce them.

References

[1] J. M. Bradshaw. An introduction to software agents. In J. M.
Bradshaw, editor,Software Agents, chapter 1, pages 3–46.
AAAI Press/The MIT Press, 1997.

[2] M. Crosbie, B. Dole, T. Ellis, I. Krsul, and E. Spafford.
IDIOT—users guide. CSD-TR 96-050, COAST Laboratory,
Purdue University, 1398 Computer Science Building, West
Lafayette, IN 47907-1398, September 1996.

[3] M. Crosbie and E. Spafford. Defending a computer sys-
tem using autonomous agents. InProceedings of the 18th
National Information Systems Security Conference, pages –,
Oct 1995.

[4] M. Crosbie and G. Spafford. Active defense of a computer
system using autonomous agents. Technical Report 95-008,
COAST Group, Department of Computer Sciences, Purdue
University, West Lafayette, IN 47907-1398, Feb 1995.

[5] D. E. Denning. An Intrusion-Detection Model.IEEE Trans-
actions on Software Engineering, 13(2):222–232, Feb. 1987.

[6] W. M. Farmer, J. D. Guttman, and V. Swarup. Security for
mobile agents: Issues and requirements. InProceedings of
the 19th National Information Systems Security Conference,
volume 2, pages 591–597. National Institute of Standards
and Technology, October 1996.

[7] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer Im-
munology.Communications of the ACM, 40(10):88–96, Oct.
1997.

[8] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Ar-
chitecture of a Network Level Intrusion Detection System.
Technical report, University of New Mexico, Department of
Computer Science, Aug. 1990.

[9] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and
D. Wolber. A Network Security Monitor. InProceedings of
the IEEE Symposium on Research in Security and Privacy,
pages 296–304, May 1990.

[10] J. Hochberg, K. Jackson, C. Stallings, J. F. McClary,
D. DuBois, and J. Ford. NADIR: An automated system for
detecting network intrusion and misuse.Computers and Se-
curity, 12(3):235–248, May 1993.

[11] W. Hunteman. Automated information system — (ais) alarm
system. InProceedings of the 20th National Information
Systems Security Conference. National Institute of Standards
and Technology, October 1997.

[12] IEEE Journal on Selected Areas in Communications, May
1989. Special issue on Secure Communications.

[13] B. W. Kernighan and D. M. Ritchie. The C Program-
ming Language. Prentice-Hall, Englewood Cliffs, NJ 07632,
USA, second edition, 1988.

[14] S. Kumar.Classification and Detection of Computer Intru-
sions. PhD thesis, Purdue University, West Lafayette, IN
47907, 1995.

[15] B. Mukherjee, T. L. Heberlein, and K. N. Levitt. Network
intrusion detection.IEEE Network, 8(3):26–41, May/June
1994.

[16] J. K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley,
Reading, MA, USA, 1994.

[17] P. A. Porras and P. G. Neumann. EMERALD: Event moni-
toring enabling responses to anomalous live disturbances. In
Proceedings of the 20th National Information Systems Secu-
rity Conference, pages 353–365. National Institute of Stan-
dards and Technology, 1997.

[18] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and de-
nial of service: Eluding network intrusion detection. Tech-
nical report, Secure Networks, Inc., January 1998.

[19] M. Rose.The Simple Book: an introduction to management
of TCP/IP based internets. Prentice Hall, NJ, 1993.

[20] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.
Heberlein, C. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,
T. Grance, D. M. Teal, and D. Mansur. DIDS (Distributed In-
trusion Detection System) - Motivation, Architecture, and an
early Prototype. InProceedings of the 14th National Com-
puter Security Conference, pages 167–176, Oct. 1991.

[21] E. Spafford and D. Zamboni. A framework and prototype
for a distributed intrusion detection system. Technical Re-
port 98-06, COAST Laboratory, Purdue University, West
Lafayette, IN 47907-1398, May 1998.

[22] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and
D. Zerkle. GrIDS: A graph based intrusion detection sys-
tem for large networks. InProceedings of the 19th National
Information Systems Security Conference, volume 1, pages
361–370. National Institute of Standards and Technology,
October 1996.

[23] S. Staniford-Chen et al. Common intrusion detection frame-
work. WWW page athttp://seclab.cs.ucdavis.
edu/cidf/ .

[24] W. R. Stevens. TCP/IP Illustrated, volume Volume 1—
The Protocols ofProfessional Computing Series. Addison-
Wesley, 1994.

[25] U. Vahalia. UNIX Internals: The New Frontiers. Prentice-
Hall, Englewood Cliffs, NJ 07632, USA, 1996.

[26] L. Wall, T. Christiansen, and R. L. Schwartz.Programming
Perl. O’Reilly & Associates, Inc., second edition edition,
September 1996.

[27] G. B. White, E. A. Fisch, and U. W. Pooch. Cooperating
security managers: A peer-based intrusion detection system.
IEEE Network, pages 20–23, January/February 1996.


