USING INTERNAL SENSORS FOR
COMPUTER INTRUSION DETECTION

A Thesis
Submitted to the Faculty of
Purdue University

by Diego Zamboni
CERIAS TR 2001-42

Center for Education and Research in
Information Assurance and Security,
Purdue University
August 2001

USING INTERNAL SENSORS FOR COMPUTER INTRUSION DETECTION

A Thesis
Submitted to the Faculty
of
Purdue University
by

Diego Zamboni

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

August 2001

To my parents for giving me life,

and to Susana for sharing it with me.

ACKNOWLEDGMENTS

As usual, a large number of people were very important for the completion of this thesis

work, and I would like to acknowledge at least some of them.

First the official acknowledgments: Portions of the research contributing to this dis-
sertation were supported by the various sponsors of CERIAS, and my stay at Purdue was
partially funded by a Fulbright/Conacyt fellowship. Their support is gratefully acknowl-
edged.

| would like to thank my advisor, Eugene Spafford. He received me with open arms
from my first day at Purdue, and provided continuous guidance and support throughout my

stay here. For that | am very, very grateful.

I would like to acknowledge the other members of my Ph.D. committee: Stephanie For-
rest, Mikhail Atallah, Jens Palsberg and Carla Brodley. They provided invaluable feedback

and advice for my work and for this dissertation.

Many people contributed significantly to my work, and my deepest gratitude goes to
all of them. Susana Soriano, Benjamin Kuperman, Thomas Daniels, Florian Kerschbaum,
Rajeev Gopalakrishna and Jim Early provided me with many hours of discussion, continu-
ously questioned my assumptions, and led to many new ideas. The original ideas for how
internal sensors would be implemented evolved from discussions with Ben Kuperman, and
he also came up with the name “ESP”. Florian Kerschbaum poured enormous amounts of
work into implementing and testing detectors, and Jim Early implemented the file integrity
detector. Angel Soriano guided me through the statistical analysis of the experimental
results, and suggested multiple avenues for future research. The staff at the Statistical Con-

sulting Service at Purdue also provided invaluable guidance in the analysis of data. Other

students at CERIAS provided support for my work: Sofie Nystrom (who let me use her
office), Kevin Du, Hoi Chang, Chapman Flack, Chris Telfer, and many others.

Substantial administrative, technical and logistic support were needed for the comple-
tion of my work. The system administrators at CERIAS, Susana Soriano and Vince Koser,
always maintained our computers up and running and kept up with my continuous requests
and questions, even at times when what they really wanted to do was remove my account
and get rid of me. All the administrative personnel at CERIAS, including Mary Jo Maslin,
Lori Floyd, Paula Cheatham, Steve Hare and Andra Boehning, always gave me their sup-
port. In particular, | would like to thank Marlene Walls, who tirelessly stayed on top of
things at CERIAS to make sure everything was going as it should. Without her, my life
(and the scheduling for seeing my advisor) would have been infinitely more complicated.

Before and throughout my stay at Purdue there were people who contributed to my ca-
reer by inspiring, supporting, and challenging me. These include Gerardo Cisneros (who
may not know it, but he was my main inspiration for pursuing a Ph.D.); my friends Rey-
naldo Roel, Carlos Gomtez, Claudia Fajardo, Agustand Adriana Casimiro, Luis and
Claudia Graf, Luis and Carmen Teresa Mgz and Eduardo Asbun, all of whom gave
me so much support and friendship; Ivan Krsul, Christoph Schuba, Tanya Mastin, Kathy
Price, Keith Watson and Robin Sundaram, who gave me a great welcome to the COAST
laboratory and helped me through my first years at Purdue. Thank you all.

Who | am is a result of my formation, and for that | have to thank my family. My
parents, Laura Zamboni and Gilberto De La Rosa, and my sisters, Ana, Danielaéand In
have been an inexhaustible source of inspiration, support, advice, and happiness.

And finally, but most importantly, | would like to thank my best friend and wife, Susana
Soriano. She lifted me at times when | thought | could not keep going, and her support and
care made it possible for me to start and finish this endeavor. She listened patiently to my
ideas and tolerated me being locked up in my office 20 hours a day (although she always
found ways of spending some time together!), and on top of that, she managed to expertly
proofread my dissertation. Susana: you are the love of my life, and words cannot express

how much | need to thank you.

TABLE OF CONTENTS

Page

LISTOFTABLES IX
LISTOFFIGURES Xi

LIST OF DEFINITIONS Xiii
ABSTRACT e Xiv
1 INTRODUCTION e 1
1.1 Background and problem statement 1
1.2 Basicconcepts 2
1.2.1 Intrusiondetection L. 2

1.2.2 Desirable characteristics of an intrusion detection system . . 3

1.3 Problems with existing intrusion detection systems 5
1.4 Thesisstatement. 5
1.5 Documentorganization. 6

2 RELATED WORK AND ARCHITECTURES FOR INTRUSION DETECTION 7
2.1 Datacollection architectures. 7
2.1.1 Data collection structure: centralized and distributed 10
2.1.2 Data collection mechanisms: direct and indirect monitoring . 11
2.1.3 Data collection mechanisms: host-based and network-based 14

2.1.4 Data collection mechanisms: external and internal sensars . 16

2.2 Dataanalysis architectures L. 21
2.3 Experiences in building a distributed intrusion detection system . . . 22
2.4 Comments about intrusion detection architectures. 25

25 Relatedwork, 26

Vi

Page

3 AN ARCHITECTURE FOR INTRUSION DETECTION BASED ON INTER-
NALSENSORS 29
3.1 Embeddeddetectors. 29
3.1.1 Howembedded detectorswork. 30

3.1.2 Relationship between internal sensors and embedded detectors31

3.1.3 Stateless and stateful detectors. 33
3.1.4 Strengths and weaknesses of embedded detectors. 34
3.2 TheESParchitecture. 35
3.2.1 Internal sensors and embedded detectors. 35
3.2.2 Per-hostexternalsensors. 35
3.2.3 Network-wide externalsensors. 35
3.3 Distinguishing characteristics of the ESP architecture. 36
3.3.1 Typesofdataobserved 36

3.3.2 Tighter coupling between event collection and event analysis 37

3.3.3 Intrusion detection at the application and operating system level38

3.3.4 Size of the intrusion detection system 38
3.3.5 Timelinessofdetection. 39
3.3.6 Impactonthehost. 39
3.3.7 Resistancetoattack 0oL 39

4 THE ESP IMPLEMENTATION 41
4.1 Purpose of the implementation 41
4.2 Specific and genericdetectors. 41
4.3 Sourcesofinformation. oL 42
4.4 Implementation platform oL 43
4.5 Reportingmechanism 44
4.6 Methodology for implementation of detectors. 46
4.7 Applicability of CVE entries oL a7

4.8 Design and implementation considerations for detectors 48

5

6

vii

Page

4.9 Naming, testing and measuring detectors 49
4.10 Relationships betweendetectors 50
4.11 Recording information about sensors and detectors. 51
412 Casestudies 53
4.12.1 Embedded detectors for network-based attacks. 53
4.12.2 Embedded detectors for sendmail attacks. 60

4.13 Detectorsimplemented. 65
4.13.1 By vulnerable platform or program 65
4.13.2 Byimplementation directory. 67
4.13.3 BYSize 67
4.13.4 Bytype 70
4135 Bydatasourcesused L. 72
4.13.6 Byvulnerabilitytype 74
4.13.7 By detection and implementationrates. 77

4.14 Auxiliary components. 77
4.15 Comments about the ESP implementation. 80
TESTING THE ESP IMPLEMENTATION 82
5.1 Performancetesting 82
5.1.1 Testdesignand methodology. 82
5.1.2 Results of the NetPerftest. 85
5.1.3 Results of the httppadtest 88
5.1.4 Comparison and comments aboutthetests 88

5.2 Detectiontesting 93
5.2.1 Testdesign and methodology. 93
5.2.2 Results from the detectiontest 97
5.2.3 Comments about the detectiontest. 109
CONCLUSIONS, SUMMARY AND FUTUREWORK 112

6.1 Conclusions., 112

Page
6.2 Summary of main contributions 114
6.3 Futurework 115
LISTOF REFERENCES. 118
APPENDICES
Appendix A: Detectors and Sensors Implemented. 129
Appendix B: The ESP Library 147
Appendix C: A Taxonomy of Software Vulnerabilites 149

LIST OF TABLES

Table Page
2.1 Classification of some existing intrusion detection systems by their data
analysis and data collection structure 8
2.2 Classification of some existing intrusion detection systems by their data
collection mechanisms and data analysis structure 9
2.3 Advantages and disadvantages of external sensors. 18
2.4 Advantages and disadvantages of internal sensors 19

2.5 Comparison between centralized and distributed intrusion detection systems 23
4.1 Summary of network-related detectors implemented during the study phase 55
4.2 Summary of sendmail-related detectors implemented during the study phase 61
4.3 Information about the implementation of auxiliary mechanisms. . . . 79
5.1 Summary of the parameters for the performancetests 84
5.2 Statistics and analysis results for data from the NetPerf experiment. 86
5.3 Statistics and analysis results for data from the loityol experiment. . . 90
5.4 Number of attacks in each category for the detectiontests 97

5.5 Distribution of original ESP detectors that responded to the attacks in the
detectiontest 99

5.6 Attacks detected by the original ESP detectors, by Krsul classification 100
5.7 Changes made during the detection test of the ESP implementation. 102

5.8 Distribution of ESP detectors that responded to attacks after the changes
made during the detectiontest. 103

5.9 Attacks detected by the final ESP detectors, by Krsul classification . 104
5.10 Confidence intervals for the detection rates of ESP detectors 111

A.1 List of specific detectors implemented. 130

Table
A.2 List of generic detectors implemented.

C.1 Categories from the Krsul taxonomy used in this dissertatian.

Figure
3.1
3.2

3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
5.1
5.2
5.3

5.4
5.5

5.6

Xi

LIST OF FIGURES

Page
Example of embedded detector on vulnerable code. 30
Relationships and differences between internal sensors and embedded de-
tectors 32
Example of embedded detector on non-vulnerable code 34
Example of the XML representation of detector information. 54
Distribution of specific detectors by vulnerable platform or program . 66
Distribution of detectors by implementation directary 68
Distribution of detector sizes. 69
Distribution of number of contiguous code blocks per detectar. . . . 70
Graph of detector sizes by combination of the ESAM and BOCAM metrics
Distribution of detectors by type 72
Distribution of detectors by type of data sourcesused. 73
Distribution of detectors by type of vulnerability 75
Distribution of detectors by coverage 78
Distribution of detectors by number of detectors they implement. . . 78
General setup for the performance tests of the ESP implementation. 83
CPU utilization measurements from the NetPerf experiment 85
Difference in mean CPU utilization between the system with and without
detectors in the NetPerf experiment. 87
CPU utilization measurements from the htipd experiment 89
Difference in mean CPU utilization between the system with and without
detectors in the httpoad experiment 91
Attacks by category for each batch of the detectiontest. 98

71

Xii

Figure Page
5.7 Total number of attacks that would have been detected by the original de-
tectors and by the detectors afterthechanges. 99
5.8 Distribution of attacks in the detection test by Krsul categories. . . . 105

5.9 Percentages of attacks detected (by Krsul category) by the original and final
detectors, plotted as y coordinates 106

5.10 Percentage of attacks detected by each detector, before and after the changes
made during the detectiontest. 107

5.11 Percentage of attacks detected by each detector before and after the changes
made during the detection test, plottedrag coordinates. 108

5.12 Comparison of the distribution of vulnerability types in the ESP detectors
and in the set of applicable attacks found during the detection test. . 110

Xiii

LIST OF DEFINITIONS

Definition Page
1.1 Intrusion. 2
1.2 Intrusiondetection 2
1.3 Intrusion detectionsystem. L. 3
2.1 Monitored component 10
2.2 Centralized data collection. 10
2.3 Distributed data collection oL 10
2.4 Directmonitoring 11
2.5 Indirectmonitoring 12
2.6 Host-based data collection. 14
2.7 Network-based data collection. 14
2.8 Externalsensar. 16
29 Internalsensor 17
2.10 Centralized intrusion detectionsystem 21
2.11 Distributed intrusion detection system 21
3.1 Embeddeddetector. 29
3.2 Statelessembeddeddetector 33
3.3 Stateful embedded detector L 33
4.1 Specificdetector 41
4.2 Genericdetector 41
4.3 Coverageofadetector. L. 50

Xiv

ABSTRACT

Zamboni, Diego. Ph.D., Purdue University, August, 2001. Using Internal Sensors for
Computer Intrusion Detection. Major Professor: Eugene H. Spafford.

This dissertation introduces the concept of using internal sensors to perform intrusion
detection in computer systems. It shows its practical feasibility and discusses its character-
istics and related design and implementation issues.

We introduce a classification of data collection mechanisms for intrusion detection sys-
tems. At a conceptual level, these mechanisms are classified as direct and indirect monitor-
ing. At a practical level, direct monitoring can be implemented using external or internal
sensors. Internal sensors provide advantages with respect to reliability, completeness, time-
liness and volume of data, in addition to efficiency and resistance against attacks.

We introduce an architecture called ESP as a framework for building intrusion detection
systems based on internal sensors. We describe in detail a prototype implementation based
on the ESP architecture and introduce the concept of embedded detectors as a mechanism
for localized data reduction.

We show that it is possible to build both specific (specialized for a certain intrusion)
and generic (able to detect different types of intrusions) detectors. Furthermore, we provide
information about the types of data and places of implementation that are most effective in
detecting different types of attacks.

Finally, performance testing of the ESP implementation shows the impact that embed-
ded detectors can have on a computer system. Detection testing shows that embedded

detectors have the capability of detecting a significant percentage of new attacks.

1. INTRODUCTION

It is feasible to perform computer intrusion detection at the host level for both known and
new attacks using internal sensors and embedded detectors with reasonable CPU and size
overhead. The present document discusses this assertion in detail, and describes the work

done to show its validity.

1.1 Background and problem statement

The field of intrusion detection has received increasing attention in recent years. One
reason is the explosive growth of the Internet and the large number of networked systems
that exist in all types of organizations. The increased number of networked machines has
led to a rise in unauthorized activity [20], not only from external attackers, but also from
internal sources such as disgruntled employees and people abusing their privileges for per-
sonal gain [113].

In the last few years, a number of intrusion detection systems have been developed both
in the commercial and academic sectors. These systems use various approaches to detect
unauthorized activity and have given us some insight into the problems that still have to
be solved before we can have intrusion detection systems that are useful and reliable in

production settings for detecting a wide range of intrusions.

Most of the existing intrusion detection systems have used central data analysis en-
gines [e.g. 32, 86] or per-host data collection and analysis components [e.g. 60, 112] that
are implemented as separate processes running on one or more of the machines in a net-
work. In their design and implementation, all of these approaches are subject to a number

of problems that limit their scalability, reliability and resistance to attacks.
At CERIAS (Center for Education and Research in Information Assurance and Se-

curity) at Purdue University, we have developed a monitoring technique daliechal

sensordased on source code instrumentation. This technique allows the close observation

of data and behavior in a program. It can also be used to implement intrusion detection sys-
tems that perform their task in near real-time, that are resistant to attacks and that impose a
reasonably low overhead in the hosts, both in terms of memory and CPU utilization.

This dissertation describes the concept of using internal sensors for building an intru-
sion detection framework at the host level, their characteristics and abilities, and experi-

mental results in an implementation.

1.2 Basic concepts
First, we introduce some basic concepts on which this dissertation is based.
1.2.1 Intrusion detection
Intrusion detection has been defined as “the problem of identifying individuals who are
using a computer system without authorization (i.e., ‘crackers’) and those who have legiti-
mate access to the system but are abusing their privileges (i.e., the ‘insider threat’)” [93].
We add to this definition the identification aftemptd4o use a computer system without
authorization or to abuse existing privileges. Therefore, our working definitiortrokion

matches the one given by Heady et al. [59]:

WORKING DEFINITION 1.1: INTRUSION
Any set of actions that attempt to compromise the integrity, confidentiality, or avail-

ability of a computer resource.

This definition disregards the success or failure of those actions, so it also corresponds to
attacks against a computer system. In the rest of this dissertation we use thattexks
andintrusioninterchangeably.

The definition of intrusion results in our working definition of intrusion detection:

WORKING DEFINITION 1.2: INTRUSION DETECTION
The problem of identifying actions that attempt to compromise the integrity, confi-

dentiality, or availability of a computer resource.

The definition of the wordntrusionin an English dictionary [96] does not include the

concept of an insider abusing his or her privileges or attempting to do so. A more accurate

phrase to use istrusion and insider abuse detectioin this document we use the term

intrusionto mean both intrusion and insider abuse.

WORKING DEFINITION 1.3: INTRUSION DETECTION SYSTEM
A computer system (possibly a combination of software and hardware) that attempts

to perform intrusion detection.

Most intrusion detection systems try to perform their task in real time [93]. However, there
are also intrusion detection systems that do not operate in real time, either because of the
nature of the analysis they perform [e.g. 76] or because they are geared for forensic analysis
(analysis of what has happened in the past on a system) [e.g. 48, 147].

The definition of an intrusion detection system does not include preventing the intrusion
from occurring, only detecting it and reporting it to an operator. There are some intrusion
detection systems [e.g. 25, 135] that try to react when they detect an unauthorized action.
This reaction usually includes trying to contain or stop the damage, for example, by termi-
nating a network connection.

Intrusion detection systems are usually classified as host-based or network-based [93].
Host-based systems base their decisions on information obtained from a single host (usu-
ally audit trails), while network-based systems obtain data by monitoring the traffic in the

network to which the hosts are connected.

1.2.2 Desirable characteristics of an intrusion detection system
The following characteristics are ideally desirable for an intrusion detection system
(based on the list provided by Crosbie and Spafford [34]):

1. It mustrun continuallywith minimal human supervision.
2. It must befault tolerant

(a) The intrusion detection system must be able to recover from system crashes,

either accidental or caused by malicious activity.

(b) After a crash, the intrusion detection system must be able to recover its previous

state and resume its operation unaffected.

3. It mustresist subversion

(&) There must be a significant difficulty for an attacker to disable or modify the

intrusion detection system.

(b) The intrusion detection system must be able to monitor itself and detect if it has

been modified by an attacker.

4. It must impose aninimal overheaan the systems where it runs to avoid interfering

with their normal operation.

5. It must beconfigurableto accurately implement the security policies of the systems

that are being monitored.

6. It must beeasy to deplay This can be achieved through portability to different ar-
chitectures and operating systems, through simple installation mechanisms, and by

being easy to use and understand by the operator.

7. It must beadaptableto changes in system and user behavior over time. For example,
new applications being installed, users changing from one activity to another, or new

resources being available can cause changes in system use patterns.
8. It must beable to detect attacks

(a) The intrusion detection system must not flag any legitimate activity as an attack
(false positives).

(b) The intrusion detection system must not fail to flag any real attacks as such
(false negatives). It must be difficult for an attacker to mask his actions to avoid

detection.

(c) The intrusion detection system must report intrusions as soon as possible after

they occur.

(d) The intrusion detection system must be general enough to detect different types

of attacks.

We will refer to these characteristics throughout this dissertation for description of dif-
ferent intrusion detection architectures and systems, including those developed for this dis-

sertation.

1.3 Problems with existing intrusion detection systems

Most existing intrusion detection systems (for example, those surveyed by Axelsson

[7], plus others [e.g. 9, 137]) suffer from at least two of the following problems:

First, the information used by the intrusion detection system is obtained from audit
trails or from packets on a network. Data has to traverse a longer path from its origin to
the intrusion detection system, and in the process can potentially be destroyed or modified
by an attacker. Furthermore, the intrusion detection system has to infer the behavior of the
system from the data collected, which can result in misinterpretations or missed events. We
refer to this as th&édelity problem. It corresponds to a failure to properly address desirable

characteristic #8.

Second, the intrusion detection system continuously uses additional resources in the
system it is monitoring even when there are no intrusions occurring, because the compo-
nents of the intrusion detection system have to be running all the time. Thisresigrce

usageproblem and corresponds to a failure in addressing desirable characteristic #4.

Third, because the components of the intrusion detection system are implemented as
separate programs, they are susceptible to tampering. An intruder can potentially disable
or modify the programs running on a system, rendering the intrusion detection system
useless or unreliable. This is thediability problem and corresponds to a failure to address

desirable characteristics #1, #2 and #3.

In this dissertation, we describe a mechanism that addresses all three of these problems

and has several other desirable characteristics.

1.4 Thesis statement

This dissertation describes the work done to show the validity of the following two

hypotheses:

1. It is possible to use internal sensors in a host to perform intrusion detection in a
way that addresses the fidelity, resource usage and reliability problems described in

Section 1.3.

2. Internal sensors can be used to detect both known and new attacks against a host.

In this contextjntrusion detectionis used as defined in Section 1.2laternal sensor

is a concept defined in Section 2.1.4.

1.5 Document organization

This dissertation follows: Chapter 1 introduces some basic concepts, the problems to
address, and the thesis statement. Chapter 2 presents a classification of the existing ar-
chitectures for the data collection and data analysis phases of intrusion detection systems,
and provides the motivation and justification for the work described in this dissertation. It
also presents related work. Chapter 3 describes the ESP architecture and its characteristics.
Chapter 4 describes the prototype implementation for an intrusion detection system based
on the ESP architecture, and the results of that implementation. Chapter 5 describes the
performance and detection tests that were done to evaluate the properties of the ESP imple-
mentation, and how they relate to the predicted properties described in Chapter 3. Finally,
Chapter 6 presents the conclusions, summarizes the contributions of this dissertation, and

discusses directions for future research.

2. RELATED WORK AND ARCHITECTURES FOR INTRUSION
DETECTION

Intrusion detection is conceptually—and in practice, in most cases—performed in two dis-
tinct phases: data collection and data analysis. Intrusion detection systems can be classified

according to how they are structured in each of those phases.

In this chapter, we describe the different structures that an intrusion detection system
can have in both data collection and data analysis and draw some conclusions that guide the
rest of this dissertation. We also mention related work as appropriate. Tables 2.2 and 2.1
summarize how different existing intrusion detection systems are classified according to

some of the architectures described in this chapter.

2.1 Data collection architectures

The performance of an intrusion detection system can only be as good in terms of de-
sirable characteristics #2, #3, #7, and #8 (see Section 1.2.2) as the data on which it bases its
decisions. For this reason, the way in which data is obtained is an important design decision
in the development of intrusion detection systems. If the data is acquired with a significant
delay, detection could be performed too late to be useful. If the data is incomplete, detec-
tion abilities could be degraded. If the data is incorrect (because of error or actions of an
intruder), the intrusion detection system could stop detecting certain intrusions and give its
users a false sense of security. Unfortunately, these problems have been identified in ex-
isting products. After examining the needs of different intrusion detection systems and the
data provided by different operating systems, Price concluded that “the audit data supplied
by conventional operating systems lack content useful for misuse detection.” [114, p. 107]

With the goal of better understanding the characteristics that make data collection
mechanisms suitable for intrusion detection, in this chapter we provide two conceptual

(centralized/distributed and direct/indirect) and two practical (host/network-based and ex-

[9z] upnv 1sni1e ‘[zz] NJODINN

[TOT] yorepmwiols ‘[1.2] ainoasjesy ‘l00T] mopeys ‘[#8] sIDHd ‘[s2] 1ebueriaN

‘[2ST] LVL1SIeN ‘[66] H4N ‘[9] SASIT ‘[£2] oeNIC ‘[8tT] 1aimoidiaN ‘[¥2] 1¥LSN ‘[€] STAIN
‘[Tg] JswwinH ‘[T9] 0006/SAI dH ‘[6€T] SAID ‘[e9] "IawN ‘[6TT] wunyue ‘[6Z] 1onuon (%€S9)
[T€] prenoyewiod ‘[2TT] @1vY3INT ‘[S¢7] uobeig Aunoas suey ‘[gyT] Walv Jepnaul ‘[9g] S3AI | paINquisid

‘221 Wada ‘[ecT] saia ‘[es] xenuad ‘[o] val ‘[9v] 1dsdie1uz ‘[GT] 81nd8SILRIAD

‘[eST]I WSO ‘[95T] SadvD ‘[v] c4v ‘[2€T] AldvY ‘[e2T] 92eI1 119040 ‘[0TT] JoNUON d0DI8gAD

‘[sTTl Sano ‘saaid ‘[retl aiv ‘[8TTl sav
[seT] Hd ‘[22] alsniLas ‘[ge] advnOupne

‘[8€T] T-Md 10} ys usje ‘[0ST] asuss

7 WopsiM ‘[02] 1v1Sn ‘[92] aaimdul ‘[#7i7] wbis-1
i[TzT] Mous ‘[g8] 0id 18NaINdas ‘[9TT] Anuasuod
Jluoisd ‘[9TT] Anuasbooayosbo

aluoIsd ‘[9TT] AnussIsoH dluoisd

‘[T¥] 43 LNIDATOd ‘[SOT] xnui Joy yored [suiay
Iremuado ‘[9€T] Josuas uousuadQ ‘[61T] wusby
Aunoas xlomiaN ‘[09] WSN ‘[82] AIN

‘[82T] Svaln ‘[89] sai ‘[¢8] INT13S prenbNY
prenbNVT ‘[FS] snuer ‘[62] LOIAI ‘[6€] mainiadAH
‘[zeT] MoeisAeH ‘[62T] xJIoM asusjaQ

‘[z¥] yoremdwod ‘[ST] onded ‘[T6] WSN NY3D
‘[20T] 019 ‘[g6] Anuas IDPoeIg [2T] pleiysddy
‘l96] XvSYV ‘[06] YAV ‘[¥T] iaWOV

(%.7)
pazijenua)d

21N13NJ1S UO0I139]|0J eled

(9%52) pawnquisi| (%S2) pazifenua)
aIn1onas sisAfeue eleq
2’2 pue T'T°Z SUO0NIas Ul pagquasap sainjoauyale
21N10NJ1S UOI23||02 BlEp pUuR 21N1aNAS SisAfeur elep ayl 01 Buipiodoe SWwalsAs Uoi10919p uoisniul Bunsixa awos Jo uonedlsse|d
T°Z 9|0eL

(e))
[1¢] prenoreuwios [s£T] HA ‘[50T] XnuiT Joj yored (%8) reusaiu
|]autay [remuado ‘[89] sal ‘STl 8indasiuelAD paseq-1ISoH | = U
[TOT] yoremuwiols [92] a1mduiL *[9TT] Anuasod dwoisd | (%0T) euiexe | £ @
‘[T9] 0006/SAl dH ‘[Z£T] AldVY ‘[76] snuer ‘[ov] 1dasseug ‘[y21] plelysddy paseq-1soH | ~
[9z] upnv1snuys ‘[ge] advnoupne ‘[8eT] T-Md
10j ys'uare ‘[05T] 8suas » wopsim ‘[02] 1VLSN o
‘[zz] N4ODINN ‘[9TT] Anuasbopoayaho S
[T2] eindageay Jluoisd ‘[9TT] AUaSISOH dluoisd o
(@)
‘[e2] oeNic ‘[TS] Jswwiny ‘[T9] 0006/SAl ‘8] s1odd ‘[T¥] 93LNIDATOJ ‘[¥2] LVLISN (%25) =3
dH ‘leeT] sauo ‘[eT1] avyana ‘[sv] uobeia ‘[e] s3aIN ‘[e9] WIAWN ‘[82T] SvaIN _ommg-moz S
L21 W3ada ‘[gsT] saia ‘[gs] xenuad 6¢] Jonuo A1unoas suey ‘[8yT] LalY
‘T22] ‘eeT] ‘[eg] ‘l62] K ‘8Tl _ 18
'[eSTI NSO '[95T] SAYvO ‘[L€T] Aldvv Jepnaui ‘[62] 101l ‘[98] s3al ‘[9] val 3 |3
‘[6€] mainiadAH ‘[zeT] yoeisAeH ‘[0TT] JonuoN g m
do2189AD ‘[ev] yoremdwod ‘[STT] SAND ~ | B
‘[9g] XvsV ‘[06] ATV ‘[PET] IV ‘[8TT] Sav S |
s |3
[22] alsniLa ‘[p¥] Wybis-L S |3
‘[TzT] 1wous ‘[00T] mopeys ‘[gg] 0id 18N8INd8S
) ‘lo£T] J10suas uousuado ‘[61T] Wby Alundas
alndag|ea <] X
_ [12] _ S[eed ﬂmz LVLSION YlomiaN ‘[Gz] 1ebueHisN ‘[8¥T] 19|MoIdISN
[66] 44N ‘[#9] SASIT ‘[TS] JowwnH T09] WsN ‘[82] QIN ‘[6TT] unyuen (%)
‘l6eT]l sauo ‘[gTt] a1vyeana ‘[sy] uobeiq ‘[z6] W3S prenBNY “prenbNy ‘[621] XIOM paseq-}IomaN
‘leet]l saia ‘[gs] xenuad ‘[v] c4v ‘[2€T] AlIAvY . .
asusjaq ‘[eeT] @dei148gAD ‘[0TT] J0NUOIN
doDuagAD ‘[5T] onded ‘saald ‘[t6] WSN NY3D
‘[201] 018 ‘[S6] Anuss FOpeId [YT] iFNOY
(%52) painquisia (%S2) pazijenuad
21monNJIs sisAfeue ereqg

‘wisIueyoaW UoNIa||09
eiep Jo adA) suo uey) aiow asn SWBISAS UONDS]18P UOISNIIUI BLIOS 8sNeda(9%, 00T 01 PPE 10U Op SWSIUBYI3W UONI3||09 BIep Joj
sobejuaolad paubisse ayl eyl 910N "Z'Z Pue #'T'Z ‘ST ‘2’ T'Z SUONDIaS Ul paglosap Se ‘ainionils sisAjeue erep Jiay) pue swsiueydaw
UOI193]|02 Blep I8y} 10} asn Ayl Sainioaliyde ay) 01 Buiplodde swalsAs uonoalap uoisniul Bunsixa awos Jo uonealyisse|d
Z'zalqeL

10

ternal/internal) classifications of data collection mechanisms. We discuss the advantages
and disadvantages of each one of them.
The termmonitored componeii$ used in this chapter and in the rest of this dissertation

as follows:

WORKING DEFINITION 2.1: MONITORED COMPONENT

A host or a program that is being monitored by an intrusion detection system.

By this definition, an intrusion detection system that is explicitly monitoring several
programs in a host (for example, the kernel, the email server and the HTTP server) could
be considered as monitoring several components even if they are all in the same host.
2.1.1 Data collection structure: centralized and distributed

When talking about data collection architectures for intrusion detection, the classifica-

tion normally refers to the locus of data collection. The following definitions are based on

those provided by Axelsson [7].

DEFINITION 2.2: CENTRALIZED DATA COLLECTION
Data used by the intrusion detection system is collected at a number of locations that

is fixed and independent of the number of monitored components.

DEFINITION 2.3: DISTRIBUTED DATA COLLECTION
Data used by the intrusion detection system is collected at a number of locations that

is directly proportional to the number of monitored components.

In these definitions, &cationis defined as an instance of running code. So for ex-
ample, a data collection mechanism implemented in a shared library could be considered
as distributed provided that the library will be linked against multiple programs, because
each running program will execute the mechanism separately. However, if the shared li-
brary will be linked against a single program and it will collect all the information needed
by the intrusion detection system, we would consider it as centralized data collection. We
can see that these definitions depend not only on how the data collection components are

implemented, but also on how they are used.

11

As can be seen in Table 2.1, both distributed and centralized data collection have been
widely used in existing intrusion detection systems and have almost equal percentages in
the systems listed in the table. A report by Axelsson [7] shows that the trend over the
years has been towards distributed intrusion detection systems, which need distributed data
collection.

The distinction between centralized and distributed data collection is the feature most
commonly used for describing the data collection capabilities of an intrusion detection
system. However, for the purposes of this dissertation, we are more interested in discussing
the mechanisms used to perform data collection and the data sources utilized. These are

described in the next sections.
2.1.2 Data collection mechanisms: direct and indirect monitoring

In the physical world, a direct observation is one in which we can use one or more
of our senses to observe or measure a phenomenon, and an indirect observation is one in
which we rely on a tool or on an observation by someone (or something) else to obtain the
information.

We build similar definitions in the context of data collection for intrusion detection.
When an intrusion detection system can measure a condition or observe behavior in the
monitored component by obtaining data directly from it, we use the ¢t monitoring
When the intrusion detection system relies on a separate mechanism or tool for obtaining
the information, we use the terimdirect monitoring In other words, direct monitoring is
the measurement or observation of a characteristic of an object, and indirect monitoring is
the measurement or observation of the effects of the object having that characteristic.

For example, using thps [146] command to observe CPU load on a Unix host is
considered a case of direct monitoring becausdirectly extracts the load data from the
corresponding data structures in the kernel. By comparison, if the CPU load is recorded in
a log file and later read from there, we consider it a case of indirect monitoring because we
are relying on a separate mechanism (in this case, a file) for the observation.

Based on the above discussion, we state that all data collection methods can be classified

as direct or indirect according to the following definitions:

12

DEFINITION 2.4: DIRECT MONITORING

The observation of the monitored component by obtaining data directly from it.

DEFINITION 2.5: INDIRECT MONITORING

The observation of the monitored component through a separate mechanism or tool.

Common examples of mechanisms through which indirect monitoring can be performed
are log files and network packets. The data obtained from these mechanisms is an effect
of the data having been present in the components that generated the data. If the data were
obtained directly from the component that generated them (for example, by reading the
appropriate data structures on the host before a packet is sent to the network), we would be
performing direct monitoring.

To perform intrusion detection, direct monitoring is better than indirect monitoring for

the following reasons:

Reliability: Data from an indirect data source (for example, a log file) could potentially
be altered by an intruder before the intrusion detection system uses it. It could also
be affected by non-malicious failures. For example, a disk becoming full or a log file

being renamed could make the data unavailable to the intrusion detection system.

Completeness: Some events may not be recorded on an indirect data source. For example,

not every action of thenetd daemon gets recorded to a log file.

Furthermore, an indirect data source may not be able to reflect internal information
of the object being monitored. For example, a TCP-Wrappers [151] log file cannot
reflect the internal operations of tiveetd daemon. It can only contain data that is
visible through its external interfaces. While that information may be sufficient for
some purposes (for example, knowing what address a request came from), it may not
be sufficient for others (for example, knowing which specific access rule caused a

request to be denied).

13

Volume: With indirect monitoring, the data is generated by mechanisms (for example, the
code that writes the audit trail) that have no knowledge of the needs of the intrusion
detection system that will be using the data. For this reason, indirect data sources
usually carry a high volume of data. For example, Kumar and Spafford [80] mention
that a C2-generated audit trail might contain 50K-500K records per user per day. For
a modest-size user community, this could amount to hundreds of megabytes of audit

data per day, as pointed out by Mounji [92].

For this reason, when indirect data sources are used, the intrusion detection system
has to spend more resources in filtering and reducing the data even before being able

to use them for detection purposes.

A direct monitoring method has the ability to select and obtain only the informa-

tion it needs. As a result, smaller amounts of data are generated. Additionally, the
monitoring components could partially analyze the data themselves and only produce
results when relevant events are detected. This would practically eliminate the need

for storing data other than for forensic purposes.

Scalability: The larger volume of data generated by indirect monitoring results in a lack
of scalability. As the number of hosts and monitoring elements grows, the overhead
resulting from filtering data can cause degradation in the performance of the hosts
being monitored or overload of the network on a centralized intrusion detection sys-

tem.

Timeliness: Indirect data sources usually introduce a delay between the moment the data
is produced and when the intrusion detection system can have access to them. Direct
monitoring allows for shorter delays and enables the intrusion detection system to

react in a more timely fashion.

However, as can be seen in Table 2.2, there is a notable disparity in the utilization of di-
rect and indirect monitoring in intrusion detection systems. Less than 20% of the intrusion

detection systems surveyed use some form of direct monitoring. This can be attributed to

14

the main disadvantage of direct monitoring: complexity of implementation. Direct moni-
toring mechanisms have to be designed in a more specific manner to the monitored com-
ponent and the type of information that it generates. Evidence to this is that most of the
intrusion detection systems in Table 2.2 (except for CylantSecure [154] and pH [135]) that

use direct monitoring are tailored for detecting specific types of attacks.

2.1.3 Data collection mechanisms: host-based and network-based
In practice, data collection methods are commonly classified as host-based or network-

based according to the following definitions:

DEFINITION 2.6: HOST-BASED DATA COLLECTION
The acquisition of data from a source that resides on a host, such as a log file, the

state of the system or the contents of memory.

DEFINITION 2.7: NETWORK-BASED DATA COLLECTION
The acquisition of data from the network. Usually done by capturing packets as they

flow through it.

Most of the intrusions detected by intrusion detection systems are caused by actions
performed in a host. For example: executing an invalid command or accessing a service
and providing it malformed or invalid data. The attacks act on the end host although they
may occur over a network.

Also, there is the case of attacks that act on the network infrastructure components
such as routers and switches. Most of those components can be considered as hosts, and
they have the ability to perform monitoring tasks on themselves [11]. Therefore, attacks
on the network infrastructure can also be considered as acting on hosts. In cases where
the network infrastructure components cannot perform monitoring tasks (for example, be-
cause they are not programmable), attacks on those components can only be detected using
network-based data collection because the attacks do not act directly on any other hosts in
the network. For the rest of our discussion, we will consider routers and switches as hosts.

The only attacks that act on the network itself are those that flood the network to its

capacity and prevent legitimate packets from flowing. However, most of these attacks

15

can also be detected at the end hosts. For example, a Smurf attack [69] could be de-
tected at the ICMP layer in the host by looking for the occurrence of a large number of
ECHO.RESPONSE packets.

In general, it is advisable to use host-based data collection for the following reasons

(see also the discussion by Daniels and Spafford [37]):

e Host-based data collection allows collecting data that reflect accurately what is hap-
pening on the host, instead of trying to deduce it based on the packets that flow

through the network.

¢ In high-traffic networks, a network monitor could potentially miss packets, whereas
properly implemented host monitors can report every single event that occurs on each

host.

o Network-based data collection mechanisms are subject to insertion and evasion at-
tacks, as documented by Ptacek and Newsham [117]. These problems do not occur

on host-based data collection because they act on data that the host already has.

¢ If the data needed by the intrusion detection system flows through disjoint paths (as
might be the case with a network with multiple gateways or when using switching
hubs), performing network-based data collection can become difficult and unreliable,
and the task of unifying the data coming from different collectors for use by the

intrusion detection system may not be trivial.

e The use of encryption renders network-based data collection mechanisms ineffective

because they cannot examine the contents of encrypted communications.

o Network-based data collection mechanisms cannot observe actions that occur inside

a host, so they will miss local attacks.
Network-based data collection also has some advantages, including the following:

e An intrusion detection system that uses network-based data collection can be de-

ployed on an existing network without having to make any changes to the hosts. For

16

this reason, a large number of commercial intrusion detection systems use network-

based data collection.

e A network-based data collection component can be completely invisible to other
hosts (this can be achieved even at the hardware level), providing a convenient van-

tage point from which to observe the actions on the network.

We consider network-based data collection as a form of indirect monitoring because
the network traffic is an effect of the data and activity at the hosts (see Definition 2.5). In a
more general sense, the advantages and disadvantages just described reflect the distinction
between direct and indirect data collection.

The relationship between the traditional host-based/network-based classification of in-
trusion detection systems [93] and the types of monitoring described in Section 2.1.2 is as
follows and can be seen in Table 2.2: Intrusion detection systems normally considered as
“network-based” correspond to Indirect/Network-based monitoring mechanisms, whereas
Indirect/Host-based and all Direct monitoring mechanisms correspond to the “host-based”
intrusion detection systems.

Both host-based and network-based data collection have been widely used in intrusion
detection systems. In recent years, an increasing number of intrusion detection systems
have started to use both host-based and network-based components in an attempt to obtain
the most complete view of the hosts being monitored.

The architecture described in this dissertation corresponds to a system that uses host-

based data collection.
2.1.4 Data collection mechanisms: external and internal sensors

All direct monitoring methods are host-based. Direct monitoring of a host can be done

using external or internal sensors according to the following definitions:

DEFINITION 2.8: EXTERNAL SENSOR
A piece of software that observes a component (hardware or software) in a host and
reports data usable by an intrusion detection system, and that is implemented by code

separate from that component.

17

DEFINITION 2.9: INTERNAL SENSOR
A piece of software that observes a component (hardware or software) in a host and
reports data usable by an intrusion detection system, and that is implemented by code

incorporated into that component.

For example, a program that uses gscommand [146] to obtain process information
on a Unix system could be considered an external sensor. If the process-information gath-
ering component was built into the Unix kernel, it would be considered an internal sensor.

A library wrapper [81] is considered as an external sensor because its code is separate from
that of the program it monitors. According to our definitions, an internal sensor could also
be built into hardware components; for example, in the firmware of a network interface
card.

Internal sensors are part of the source code of the monitored component. They can be
added to an already existing program, and in that case they can be considered as a case of
source code instrumentation. Ideally, internal sensors should be added during development
of the program when the cost and effort of making changes and fixing errors is lower [108].
Also, at that point the sensors could be added by the original authors of the program instead
of by someone else—who would have the added cost of understanding the program first.

Note that by our definitions, any portion of a program can be considered as an internal
sensor, as long as it provides data that can be used by an intrusion detection system. No
specification is made about how the data should be produced or transmitted.

External and internal sensors for direct data collection have different strengths and
weaknesses and can be used together in an intrusion detection system. Tables 2.3 and 2.4
list the advantages and disadvantages of each type of sensor.

From the point of view of software engineering, internal and external sensors present

different characteristics in the following aspects:

Introduction of errors: It is potentially easier to introduce errors in the operation of a
program through the use of internal sensors because the code of the program being

monitored has to be modified. Errors can also be introduced by external sensors (for

Table 2.3

18

Advantages and disadvantages of external sensors.

External sensors

Advantages

Disadvantages

e Easily modified, added or removed
from a host.

e Can be implemented in any pro-
gramming language that is appropri-
ate for the task.

There is a delay between the genera-
tion of the data and their use because
after the data are produced they have
to be made available on an exter-
nal source before a sensor can access
them.

The information can potentially be
modified by an intruder before the
sensor obtains it (for example, if the
data are read from a log file).

Can potentially be disabled or modi-
fied by an intruder.

Added performance impact be-
cause the sensors are separate
components—processes, threads, or
loaded libraries—possibly running
continuously.

Limited access to information be-
cause they depend on existing mech-
anisms (such as Unix commands or
system calls) to obtain it.

Table 2.4

19

Advantages and disadvantages of internal sensors.

Internal sensors

Advantages

Disadvantages

Minimum delay between the gen-
eration of the information and its
use because it can be obtained at its
source.

It is practically impossible for an
intruder to modify data to hide his
tracks because data are never stored
on an external medium before the
sensor obtains them.

Cannot be easily disabled or mod-
ified because they are not separate
processes.

Network traffic and processing load
are reduced because embedded sen-
sors can look for specific pieces
of information instead of reporting
generic data for analysis. Also, they
can partially analyze the data at the
moment of acquisition.

Embedded sensors do not cause a

continuous CPU overhead because e

they are only executed when re-
quired. This makes it possible to in-
corporate a larger number of sensors
on a single host.

Because they are implemented as
part of the program they are monitor-
ing, they can access any information
that is necessary for their task.

Their implementation requires ac-
cess to the source code of the pro-
gram that needs to be monitored.
Arguably harder to implement be-
cause they require modifications to
the program being monitored. How-
ever, if the sensors are added dur-
ing development of the program, this
problem is reduced.

Need to be implemented in the same
language as the program they are go-
ing to monitor.

If designed or implemented incor-
rectly, they can severely harm the
performance or the functionality of
the program they are part of.

Harder to update or modify and to
port to different operating systems,
or even to different versions of the
same program.

Reduced portability, because the
sensors depend on the specifics of
the code where they are imple-
mented.

20

example, an agent that consumes an excessive amount of resources, or an interposed
library call that incorrectly modifies its arguments). We claim that most internal
sensors can be fairly small pieces of code. Their size allows them to be extensively
checked for errors. Also, this problem would be reduced if sensors were added during

development of the program instead of afterwards.

Maintenance: External sensors are easier to maintain independently of the program they
monitor because they are not part of it. However, when internal changes to the pro-
gram occur, it can be simpler to update internal sensors (which can be changed at the
same time the program is modified) than external sensors (which have to be kept up

to date separately).

Size: Internal sensors can be smaller (in terms of code size and memory usage) than exter-
nal sensors because they become part of an existing program; thus, avoiding the base

overhead associated with the creation of a separate process.

Completeness:Internal sensors can access any piece of information in the program they
are monitoring whereas external sensors are limited to externally-available data. For
this reason, internal sensors can have more complete information about the behavior
of the monitored program. Furthermore, because internal sensors can be placed any-
where in the program they are monitoring, their coverage can be more complete than

that of an external sensor which can only look at the program “from the outside.”

Correctness: Because internal sensors have access to more complete data, we expect them
to produce more correct results than external sensors, which often have to act based

on incomplete data.

External sensors are better in terms of ease of use and maintainability whereas internal
sensors are superior in terms of monitoring and detection abilities, resilience and host im-
pact. Both types of sensors can be used in an intrusion detection system to take advantage

of their strengths according to the specific task each sensor has to accomplish.

21

We can see in Table 2.2 that a small percentage of the intrusion detection systems sur-
veyed use internal sensors and most of those were designed for detecting specific types of
attacks—the two exceptions are CylantSecure [154] which uses internal sensors for collect-
ing information analyzed externally, and pH [135], which fully implements data collection
and detection using internal sensors, and is a good example of the potential of internal sen-
sors. This can be attributed to the considerable difficulty in the implementation of internal
sensors: the monitored components themselves have to be modified. On closed-source sys-
tems, this is impossible unless the vendor provides the modifications, and on open-source

systems it can be cumbersome and time consuming.

2.2 Data analysis architectures

Intrusion detection systems are classified as centralized or distributed with respect to

how the data analysis components are distributed, as follows [137]:

DEFINITION 2.10: GENTRALIZED INTRUSION DETECTION SYSTEM
An intrusion detection system in which the analysis of the data is performed in a
number of locations that is fixed and independent of the number of monitored com-

ponents.

DEFINITION 2.11: DISTRIBUTED INTRUSION DETECTION SYSTEM
An intrusion detection system in which the analysis of the data is performed in a
number of locations that is directly proportional to the number of monitored compo-

nents.

Note that these definitions are based on the number of monitored components and not
of hosts (as has been traditionally the case), so it is feasible to have an intrusion detection
system that uses distributed data analysis within a single host if the analysis is performed
in different components of the system.

In the definitions above, Bcationis defined as an instance of running code. So for
example, an analysis component implemented in a shared library could be considered as

a distributed analysis component if the library will be linked against multiple programs,

22

because each running program will execute the analysis component separately. However, if
the shared library will be linked against a single program and all the data analysis will occur
there, we would consider it as centralized analysis. So we can see that these definitions
depend not only on how the analysis components are implemented, but also on how they
are used.

Both distributed and centralized intrusion detection systems may use host- or network-
based data collection methods, or a combination of them.

Some strengths and weaknesses of centralized and distributed intrusion detection sys-
tems are shown in Table 2.5.

It can be observed from Table 2.1 that the vast majority of intrusion detection systems
surveyed use centralized data analysis. This can be attributed to the difficulty in the imple-
mentation of a distributed analysis mechanism.

Most weaknesses of distributed intrusion detection systems can be overcome through
technical means whereas centralized intrusion detection systems have some fundamental
limitations (for example, with respect to scalability and graceful degradation of service).
In the last few years, an increasing number of distributed intrusion detection systems has
been designed and built [e.g. 11, 66, 112, 137, 139].

2.3 Experiences in building a distributed intrusion detection system

AAFID [137] is a framework for distributed monitoring of hosts in a network specifi-
cally oriented towards intrusion detection. It uses a hierarchical structure of entities. At the
lowest level in the hierarchy, AAFID agents perform monitoring functions on a host and
report their findings to the higher levels of the hierarchy where data reduction is performed.

During the implementation of the AAFID system, we faced decisions regarding the
type of monitoring to use, and we experienced the limitations of indirect monitoring and of
external sensors. Even when trying to do direct monitoring, we encountered problems with
the specific techniques used to perform it. These experiences prompted us to investigate
new data collection techniques for intrusion detection.

AAFID was designed to use host-based data collection; therefore the agents run in

each host and collect data from it. Audit trails are the most abundant source of data in a

23

Table 2.5

Comparison between centralized and distributed intrusion detection systems with respect
to some of the desirable characteristics described in Section 1.2.2.

Characteristic

Centralized Distributed

Reliability

A relatively small number of com- A larger number of components
ponents need to be kept running.need to be kept running.

Fault tolerance

The state of the intrusion deteGhe state of the intrusion detec-
tion system is centrally storedtion system is distributed, mak-
making it easier to recover it aftering it harder to store in a consis-
a crash, but also making it easietent and recoverable manner, but
to get corrupted by a failure. improving the chances that most

parts will survive after a failure.

Added
overhead

Impose little or no overhead onimpose little overhead on the
the hosts except for the one$iosts because the components
where the analysis componentsunning on them are smaller.
run. In those hosts a large load i¢HHowever, the extra load is im-
imposed and they may need to bposed on most of the hosts being
dedicated to the analysis task. monitored.

Scalability

The size of the intrusion detecA distributed intrusion detection

tion system is limited by its fixed system can scale to a larger num-
number of components. As théber of hosts by adding compo-
number of monitored hosts growsnents as needed. Scalability may
the analysis components will needbe limited by the need to commu-
more computing and storage renicate between the components
sources to keep up with the load. and by the existence of central co-

ordination components.

Graceful
degradation of
service

If one of the analysis componentdf one analysis component stops
stops working, most likely the working, some programs or hosts
whole intrusion detection systenmay stop being monitored, but the
stops working. Each componentest of the intrusion detection sys-
is a single point of failure. tem can continue working.

Dynamic re-
configuration

A small number of componentsindividual components may be re-
analyze all the data. Reconfig<onfigured or added without af-
uring them may require the in-fecting the rest of the intrusion de-
trusion detection system to beection system.

restarted.

24

Unix system and are the data source used by most intrusion detection systems. In the first
implementation of the AAFID system, most of the agents obtained their data from log files.
However, audit trails are an indirect data source and suffer from the drawbacks mentioned
in Section 2.1.2.

To perform direct data collection appropriately, operating system support is needed,
possibly in the form of hooks to allow insertion of checks at appropriate points in the
system kernel and its services. Lacking this support, we implemented direct monitoring

using the following mechanisms:

e Separate entities that run continuously, obtaining information and looking for intru-

sions and notable events.

This is the form of most existing AAFID agents. Some agents obtain information
from the system by running commands (suclpsfl46], netstat[144] or df [142]),

others by looking at the state of the file system (for example, checking file permis-
sions or contents) and others by capturing packets from a network interface (note
that this is not necessarily the same as doing network-based monitoring because in
most cases these agents will only capture packets destined to the local host, and not
to other hosts). Some agents have to resort to indirect monitoring by looking at audit
trails because in some cases an audit trail is the only place where information can be

obtained by an external sensor.

e Wrapper programs that interact with existing applications or utilities and try to ob-

serve their behavior by looking at their inputs and outputs.

e Wrapper libraries using library interposition [81].

Using this technique, calls to library functions can be intercepted, monitored, mod-
ified or even cancelled by the interposing library. This is a powerful technique that
can detect a wide range of attacks, but it is limited because it can only look at the data
available as arguments to each call and at the global variables of a program. It cannot

have access to any other internal data of the calling program or the called subroutine.

25

All these techniques of data collection can be classified as external sensors and have
the weaknesses described in Section 2.1.4. For this reason, we started further exploration

of the use of internal sensors which formed the basis for this dissertation.

2.4 Comments about intrusion detection architectures

In this chapter, we have described some of the main architectural concepts that are used
in intrusion detection. In data collection, host-based direct monitoring using internal sen-
sors presents multiple benefits in terms of efficiency, reliability and data collection abilities.

However direct monitoring using internal sensors has been used by few intrusion detec-
tion systems, as shown in Table 2.2. This is a consequence of the implementation difficulty
of internal sensors and of the lack of studies regarding their properties and the related de-
sign and implementation issues. Also, internal sensors lack portability and increase the
cost of deployment and maintenance of the intrusion detection systems because they re-
quire dealing with the source code of each program that needs to be monitored. However,
the general idea of using internal sensors is to get as close as possible to the data sources
needed by the intrusion detection system, and are the only mechanism able to provide other
desirable characteristics, including fidelity, reliability and resistance to attacks. For these
reasons, it is important to explore their capabilities and limitations.

In data analysis, a distributed architecture provides multiple benefits in terms of scal-
ability, reliability and efficiency. This is the reason why through the years, intrusion de-
tection system research and development has tended towards working on distributed sys-
tems [7].

Note that distributed intrusion detection systems are usually associated with operation
on multiple hosts. However, according to the definitions given in this chapter, the compo-
nents of a distributed intrusion detection system do not necessarily have to be in different
hosts. If multiple parts of a single host are being monitored, and the data analysis com-
ponents reside on different parts of the system, they could be considered as a single-host
distributed intrusion detection system.

This chapter is organized around the distinction between the data collection and data

analysis steps. Conceptually, this distinction is useful for analysis and for reasoning about

26

the intrusion detection process. Its usefulness has been shown in efforts to model the intru-
sion detection process [7] and intrusion detection systems [111].

In practice, essentially every intrusion detection system has followed this separation by
making data collection and analysis two distinct steps separated in time and often in space.

However, this separation has the following shortcomings:

e It creates a window of time between the generation and the use of data. This can
cause inconsistencies between what the intrusion detection system “sees” and the
state of the system at the time the data is analyzed. It also increases the possibility that
the data get modified before the intrusion detection system analyzes them, either by
accident or malicious action. Furthermore, it reduces the timeliness of the reactions
of the intrusion detection system: by the time it analyzes the data and reacts to an

intrusion, it may be too late to do anything about it.

¢ It lengthens the path through which the data has to flow between its generation and
its use. This increases the amount of traffic in the system (within the host or over the
network), reducing the scalability of the intrusion detection system. It also increases
the time between the generation and use of the data and brings along all the problems

described in the previous item.

For these reasons, in practice, the data collection and analysis steps should be as close
together as possible.

The rest of this dissertation describes a distributed architecture based on internal sen-
sors that addresses many of the problems mentioned above and has significant beneficial

properties with respect to the desirable characteristics described in Section 1.2.2.

2.5 Related work

The lack of adequate audit data for intrusion detection was documented by Price [114],
showing that most intrusion detection systems in existence today operate with incomplete
data, which are insufficient to support adequate detection. Internal sensors are able to
overcome limitations in auditing systems by performing direct monitoring and completely

skipping the operating system’s auditing system.

27

The work by Crosbie and Spafford [33, 35] provided the foundation for using a large
number of small independent components in intrusion detection. This work also provides
an idea of how internal sensors could become more complex entities when necessary. They

could even learn or evolve as they capture data about their environment.

The analysis of system call sequences to detect intrusions proposed by Forrest et al.
[49] is a technique that lends itself naturally to be implemented using internal sensors. This
was demonstrated in practice by the further development of the pH system based on that
technique [135], which is implemented almost completely inside the Linux kernel. The
pH system also responds to attacks by slowing down or aborting system calls, showing
the potential that internal sensors have for providing not only detection but also response
capabilities.

The collection of data using specialized mechanisms for detecting certain vulnerabili-
ties in a Unix kernel was described by Daniels and Spafford [37]. That work focused on
low-level IP vulnerabilities, and described the generation of new audit events (which could
be classified as internal sensors) and the implementation of methods for detecting certain

vulnerabilities.

Erlingsson and Schneider [47] described the useefgfrence monitorgo monitor the
execution of a program. The reference monitors they describe are implemented as code
that evaluates a security automaton and is inserted automatically before any instruction that
accesses memory. These reference monitors could be considered as internal sensors that
check for generic violations of policy. The monitors also halt the program when a violation

is detected, so it can be considered as a reactive intrusion detection system.

The concept of application-level intrusion detection has been described by Sielken
[131], who discussed advantages of the approach from a theoretical standpoint. We agree
with the advantages that application-specific monitoring can provide for intrusion detec-
tion. Internal sensors are an ideal tool for this purpose because they can be embedded into

any program, whether it is a system program or a user-level application.

The idea of using library interposition for intrusion detection, as described by Kuper-

man and Spafford [81] was a first step in doing direct data collection for intrusion detec-

28

tion. We classify it as a form of external sensors, but we think it can be further developed
to provide good application-specific intrusion detection by, for example, tailoring inter-
posed libraries to specific applications, or combining data generated by interposed libraries
with data provided by internal sensors to get a complete picture of what is happening in a
program.

As shown in Table 2.2, few intrusion detection systems have been developed using
internal sensors. CylantSecure [154] utilizes internal sensors but only in the form of coun-
ters whose values are used to build a profile of program behavior. The values reported by
the sensors are analyzed and profiled by an external program. The LIDS [68] and Open-
wall [105] projects have developed kernel patches for Linux [10] that prevent certain op-
erations defined as “dangerous.” These patches add checks that constitute internal sensors,
but are specifically tuned for preventing those operations.

Another example of the use of internal sensors is FormatGuard [31]. This is a spe-
cialized tool for detecting and preventing format-string-based buffer overflows [98, 127].
By recompiling the affected programs, code is inserted for checking when a format string
attack is attempted against any of the functions instrumented. These pieces of code con-
stitute internal sensors that detect attacks in a distributed fashion (because even within a
single host, the “data analysis” is done by the sensors at each monitored component). For-
mat string attacks are difficult to detect, and FormatGuard is one clear example of one of the
advantages of internal sensors over external sensors: They can access internal information
of the monitored component and can even add or re-implement functionality or information

as needed to aid in the detection.

29

3. AN ARCHITECTURE FOR INTRUSION DETECTION BASED
ON INTERNAL SENSORS

Internal sensors have many characteristics that make them well-suited for performing host
monitoring and intrusion detection, as described in Section 2.1.4. In this chapter, we de-
scribe an architecture for intrusion detection called ESP (feonibbedded Sensors Projgct

with the following main characteristics:

¢ Internal sensors are the main data collection component.

e It provides for distributed, localized data reduction through the use of embedded

detectors.

e It also contemplates the existence of external sensors when necessary for data pro-

cessing and higher-level operations.

The ESP architecture could be classified in the [Distributed, Distributed] cell of Ta-
ble 2.1 and in the [Direct/Host-based internal, Distributed] cell of Table 2.2.

3.1 Embedded detectors
The ESP architecture uses embedded detectors as a mechanism for localized data re-

duction.

WORKING DEFINITION 3.1: EMBEDDED DETECTOR

An internal sensor that looks for specific attacks and reports their occurrence.

Embedded detectors should exist in the code at the point where an attack can be detected
by using the data available at that moment. If implemented correctly, detectors are able to

determine whether an attack is taking place by performing simple checks.

30

1 char buf[256]; 1 char buf[256];

2 strepy(buf, getenv("HOME")); 2
3 if (strlen(getenv("HOME"))>255) {
4 log_alert("buffer overflow");
5 }
6 }
7 strcpy(buf, getenv("HOME"));

Code before inserting detector Code after inserting detector

Figure 3.1. Example of code vulnerable to a buffer overflow before and after inserting an
embedded detector. On the right, lines 2—6 form the embedded detector.

Because of their detection abilities, embedded detectors are a mechanism for perform-
ing localized data reduction. This is particularly important in a distributed intrusion detec-

tion system for reducing the amount of data generated by the system.

3.1.1 How embedded detectors work

Figure 3.1 shows an example of a simple embedded detector. The code on the left
is potentially vulnerable to a buffer-overflow attack [2] because the value of the HOME
environment variable is being copied to a buffer without checking its length. On the right,
lines 2—6 have been added and constitute an embedded detector. This detector computes
the length of the HOME environment variable. If it is longer than the buffer into which
it will be copied, the detector generates an alert. This example assumes that the function
log _alert has been defined elsewhere. The string “buffer overflow” is shown only as an
example—in a real detector, a more descriptive message should be provided.

This example gives an idea of how embedded detectors work in general: they look at
the information available in the program to determine if an attack is taking place. If such a
condition is found, an alert is generated.

The example in Figure 3.1 does not try to prevent the overflow from happening. It only
reports its occurrence, as per our definition of embedded detector. Potentially, embedded
detectors could try to stop the intrusions they detect. For example, our sample detector
could cut the HOME environment variable to 255 characters to ensure that it will fit in the

allocated buffer. However, the effects of detectors modifying data or altering the program

31

flow are much harder to analyze. Our current work has focused on detection and not on

reaction.

3.1.2 Relationship between internal sensors and embedded detectors

The difference between an internal sensor and an embedded detector is that sensors can
observe any condition in a program and report its current state or value; whereas a detector
looks for specific signs of attacks (Figure 3.2(a)). Embedded detectors are a specialized

form of internal sensors.

Conceptually, an embedded detector can be considered as an internal sensor with added
logic for detecting attacks, as shown in Figure 3.2(b). In some cases, the internal sensor
is clearly differentiable in the code. For example, a detector for port scans [52] bases its
decision on a sensor that keeps track of connections to ports and reports their number and

sources.

In other cases, the internal sensor is implicitly built into the embedded detector and
its value is immediately used to take a decision. For example, a detector for a Ping-of-
death [16] attack can check the size of a ping packet by comparing a variable against a
certain threshold and emitting an alert if it is larger. In this case, the conceptual “sensor”
would be the act of reading the value of the variable, and the “detector” portion would be

the comparison of the value against a threshold.

This difference between the data collection and data analysis portions of an embedded
detector can be significant in practice. In some cases, data from a single internal sensor—
for example, the accumulated non-requested packets that have been received from a host—
can be used by multiple detectors to look for different attacks (Figure 3.2(c)). It is also

possible that a single detector collects data from multiple sensors (Figure 3.2(d)).

As mentioned in Section 2.4, the data collection and data processing phases of the
intrusion detection process should be as close together in time and space as possible. For
this reason, most embedded detectors should be of the type in which the sensor and the

detector are tightly coupled together.

32

Program Program

S -

(a) Sensors generate values; detectors generate alerts.

Embedded detector

Internal sensor Logic for
(implicit or explicit) detection

(b) Conceptual structure of an embedded detector.

Detector

Sensor Detector

Detector

(c) One sensor can provide data to multiple detectors.

Sensor

Sensor Detector

Sensor

(d) Multiple sensors can provide data to a single detector.

Figure 3.2. Relationships and differences between internal sensors and embedded
detectors.

33

3.1.3 Stateless and stateful detectors

One of the distinguishing characteristics of internal sensors (and of embedded detectors
by extension) is that they can be placed at any point in the monitored component. Ideally,
they should be placed at the point at which the information needed to detect an attack is
readily available.

However, there are some cases in which a detector may need to collect information over
a period of time to detect an attack. One example is the detection of port scans. A port scan
cannot be signaled at the first packet received from a host because other packets could be
on their way, and they should be observed to make a proper determination about the type
and scope of the port scan that is taking place. So the detector (or its associated sensor)
needs to accumulate information about packets that have been received from other hosts.
When enough evidence is accumulated, an alert should be produced.

Considering this possibility, embedded detectors are classified in two groups:

WORKING DEFINITION 3.2: STATELESS EMBEDDED DETECTOR
A detector that bases its decisions solely on information present in the program at
the time of evaluation, or that can be obtained from the system at the moment it is

needed.

WORKING DEFINITION 3.3: STATEFUL EMBEDDED DETECTOR
A detector that adds information to the program for the purpose of detection. It may

decouple data gathering and evaluation into two separate tasks.

This classification has an impact in the way sensors are designed and implemented.
Stateless sensors are usually short because they check for an existing condition. Stateful
detectors almost always add additional state-keeping code, and the state kept is used later
for the detection.

In many cases, a stateful detector has a clearly differentiable internal sensor associated

with it as discussed in Section 3.1.2.

34

1 char buf[256]; 1 char buf[256];

2 strncpy(buf, getenv("HOME"), 2

3 sizeof(buf)); 3 if (strlen(getenv("HOME"))>255) {
4 log_alert("buffer overflow");
5 }
6 }
7 strncpy(buf, getenv("HOME"),
8 sizeof(buf));

Code before inserting detector Code after inserting detector

Figure 3.3. Example of code not vulnerable to a buffer overflow before and after inserting
an embedded detector. On the right, lines 2—6 form the embedded detector.

3.1.4 Strengths and weaknesses of embedded detectors

Using embedded detectors in an intrusion detection system has the advantages and dis-

advantages mentioned for internal sensors in Table 2.4.

Additionally, embedded detectors can look for attempts to exploit a vulnerability in-
dependently of whether the vulnerability actually exists in the host where the detector is
running. For this reason, embedded detectors can detect attacks against vulnerabilities that
have already been fixed, or even that are specific to a different platform or operating sys-
tem. For example, a detector in a Unix system could detect attacks specific to Windows
NT. In this manner, embedded detectors can be used to implement a “universal honeypot”
(a honeypot is the name given to a host that is connected to a network with the purpose
of allowing attackers to explore it, usually with the objective of studying the attacker in
action). This feature is used in this dissertation for exploring the detection of intrusions

over multiple architectures and platforms.

Figure 3.3 shows code similar to the one in Figure 3.1, but this code is not vulnerable
to a buffer overflow because tistrncpy function is being used. However, the same
detector can be added to this code as shown on the right side of Figure 3.3. This example
shows how embedded detectors can exist even in code that is not vulnerable to the attacks

for which the detectors look.

35

Another advantage of embedded detectors is that they can use the existing defense
mechanisms of the monitored component (for example, if the program already looks for

malicious activity) and combine them with detection.

3.2 The ESP architecture

The ESP architecture consists of three classes of components:
¢ Internal sensors and embedded detectors.

e Per-host external sensors

¢ Network-wide external sensors

3.2.1 Internal sensors and embedded detectors

These are the lowest-level components of the architecture. Internal sensors are used for
direct monitoring of a host, and embedded detectors are used for performing localized data
analysis in which certain types of intrusions are detected.

This layer of the architecture is its main distinguishing characteristic, and its study is
the main subject of this dissertation.

3.2.2 Per-host external sensors

Although embedded detectors are able to detect a significant number of attacks, there
are some attacks that may require a higher-level analysis by observing data generated by
multiple internal sensors and embedded detectors, or even possibly data observed using
other types of sensors.

For this reason, the ESP architecture allows for a layer of components running on each
host that perform these higher-level operations. The number, structure and function of
these components are left unspecified. However, it is feasible to imagine using ideas and
components from other existing intrusion detection architectures [e.g. 97, 137] for this

function.
3.2.3 Network-wide external sensors

To operate in a network environment, an intrusion detection system needs to be able to

correlate information from multiple hosts. For this reason, the ESP architecture also allows

36

for a layer of components that monitor the operations on multiple hosts and receive data
from per-host external sensors or possibly even from network-based sensors.

The organization and specific functions of these components are outside the scope of
this dissertation which focuses on the internal sensors layer. The use of network-wide
monitoring components has been studied in other intrusion detection architectures [e.qg.
97, 133, 137], and many of those concepts could potentially be applied to an ESP-based

intrusion detection system.

3.3 Distinguishing characteristics of the ESP architecture

An implementation of the ESP architecture is described in Chapter 4 and is used to test
the validity of the Thesis Hypotheses described in Section 1.4. In this section, the distin-
guishing features of the ESP architecture are discussed. They are related as appropriate
with the desired characteristics of an intrusion detection system (Section 1.2.2) and with

the drawbacks of the ESP architecture.
3.3.1 Types of data observed

ESP is fundamentally different from other intrusion detection systems in that it does
not observe network packets or audit trails. By being part of the programs that are moni-
tored, embedded detectors can obtain all the information that could be obtained from those
sources plus more information that is not available from them. The data on which an ESP

intrusion detection system bases its decisions is a combination of the following elements:

e The execution flow of the program being monitored as reflected by the location of

the detector.

e The data being used by the program as stored in the variables and data structures

available to the detector.

e Other system and program state that can be obtained by the detector.

By performing direct monitoring, ESP has all the advantages described in Section 2.1.2.

When compared to other intrusion detection techniques that observe program behavior [e.g.

37

65, 66], ESP has the advantage of being able to observe the internal data and state of the
program and not only its externally observable behavior.

These advantages come at the cost of losing generality in the implementation of the
intrusion detection components. Detectors are built specifically for looking at certain data
in certain locations, and the only way of porting them to some other location is to rewrite
the code. Without a formal analysis, it is difficult to guarantee completeness of the data
that is analyzed by the detectors in a practical implementation. However, as will be shown
in Section 5.2, it is possible to build embedded detectors able to look for generic signs of
malicious activity, regaining some generality.

Compared to other generic intrusion detection systems that use internal sensors [e.g.
36], ESP has the advantage that each embedded detector is optimized for the tasks it per-
forms. The data it produces does not need (in the general case) to be post-processed to
detect intrusive behavior.

Although ESP detectors look for specific actions that indicate intrusive activity, they do
not necessarily have to be tied to a specific attack. As will be shown in Chapter 4, detectors
can be built both for detecting specific attacks and for detecting generic intrusive activity;
therefore being able to detect both known and new attacks.

Finally, because all the data is being observed from within the program that uses it,
embedded detectors are able to examine information that would normally be unavailable.
One example would be data that is only decrypted in memory while the program is run-
ning. This improves the completeness of the data that is available to the intrusion detection
system.

These characteristics relate to desirable characteristic #8 and potentially to # 7 (see
Section 1.2.2).

3.3.2 Tighter coupling between event collection and event analysis

As mentioned in Section 2.4, data collection and data analysis have traditionally been
two clearly distinguishable, loosely coupled steps of the intrusion detection process.

The use of embedded detectors reduces this distinction because in most cases the data

used for detecting attacks is not composed of discrete events that are collected and later

38

analyzed, but of the factors described in Section 3.3.1. Therefore, ESP has the ability
of not only performing matching operations on the data it receives but is able to actually
examine the actions involved in the execution of the program.

The tighter coupling between data collection and analysis allows the detector to make
a better determination about the occurrence of an attack and reduces the length of the
path that the data has to traverse between its generation and its use; therefore it reduces the
possibility that the data could be modified, destroyed or otherwise disrupted before they are
used by the analysis components of the intrusion detection system. This aids in obtaining
desirable characteristics #3 and #8.

Note that in some cases, it might be impossible to detect an attack using information
available to a single embedded detector. In those cases, it is advisable to use internal
sensors to generate data, and perform the analysis using components that have access to
data provided by multiple internal and external sensors. Also, preservation of data may also
be necessary for forensic purposes or for analyzing long-term events. Embedded detectors
are not intended to replace other forms of data collection and analysis, but to provide a
mechanism for performing localized data reduction when appropriate.

3.3.3 Intrusion detection at the application and operating system level

Application-based intrusion detection systems [131] can detect high-level attacks and
are a good complement to network-based and operating-system—based intrusion detection
systems.

The ESP architecture can be used to perform intrusion detection at the application,
operating-system and network levels. In general, embedded detectors can be implemented
at any point in the system depending on where the information that identifies malicious
activity is available.

This flexibility helps in obtaining desirable characteristics #1 and #8.
3.3.4 Size of the intrusion detection system

Embedded detectors can be written to look specifically for the pieces of information
that they need to perform the detection without having to go through a generic process of

event collection and analysis. This makes it possible for the lowest-level components in the

39

ESP architecture to be highly optimized to their task and in most cases to be simple and
short.
The small size of the sensors and detectors provides the ESP architecture with desirable

characteristic #4.

3.3.5 Timeliness of detection

Embedded detectors can be located at the point where an intrusion would have an ad-
verse effect, or at the point at which the malicious behavior can first be detected. This al-
lows the ESP architecture to detect problems before they happen (or while they are happen-
ing) and creates the possibility of taking preemptive report, control and response actions.
Although not discussed in this dissertation, it is conceivable that the intrusion detection
system could also stop the intrusions before they cause any damage. This could be done by
modifying the data that the program is using, by altering its state, or in extreme cases, by
stopping or killing the program itself.

The timeliness of detection relates to desirable characteristics #1 and #8c.
3.3.6 Impact on the host

Embedded detectors in the ESP architecture are intended to perform simple checks to
determine whether an attack is taking place. For this reason, they can have low impact on
the host they are monitoring. For the same reason, it is possible to have a larger number of
detectors in a host, increasing detection capabilities without imposing a large overhead.

However, note that because sensors and detectors can exist anywhere in the monitored
components (even in critical sections of the code), a defective or poorly implemented de-
tector has the possibility of significantly harming performance or reliability.

If properly implemented, the internal sensors and embedded detectors of the ESP ar-
chitecture can obtain desirable characteristic #4.
3.3.7 Resistance to attack

At the lowest data collection and analysis level (that of the internal sensors and the em-
bedded detectors), the ESP architecture is completely integrated into the monitored com-
ponents, and there are no separate processes that belong to the intrusion detection system

running on the host. For this reason, such an intrusion detection system is less vulnerable to

40

tampering or disabling by an intruder. To disable the intrusion detection system, an attacker
would have to disable the monitored component. Although this potentially constitutes an
attack unto itself, it makes it impossible for the intruder to tamper with the monitored com-
ponent to make it act in an unauthorized way (for example, by increasing its privileges)
without being detected.

This high level of integration with the monitored components helps the ESP architecture
to obtain desirable characteristic #3.

Because the monitored components have to be modified, the cost of implementation for
an intrusion detection system that uses the ESP architecture may be higher than that for
one which uses only external sensors. If the intrusion detection system is implemented on
an existing system, the source code must be available, and the implementer needs to study
and understand the source code before making any modifications. Ideally, ESP sensors and

detectors should be incorporated into a program during its development.

41

4. THE ESP IMPLEMENTATION

This chapter describes the details of the implementation of a prototype intrusion detec-
tion system based on the ESP architecture. This prototype uses embedded detectors and

constitutes the main testing and analysis platform for this dissertation.

4.1 Purpose of the implementation

The two hypotheses that underlie this dissertation (Section 1.4) are practical in nature.
First, they intend to show that it is feasible to build an intrusion detection system using the
ESP architecture. Second, it can be used to detect both known and new attacks. Therefore,
an implementation was a center point for the development of this dissertation and was used
both for practical verification of the intended features of the architecture and for aiding in
reasoning about and experimenting with its characteristics.

The ESP implementation was also used to confirm the possibility of building both spe-
cific and generic detectors.

In the rest of this chapter, the term “detector” is used to mean both internal sensors and

embedded detectors except when explicitly stated otherwise.

4.2 Specific and generic detectors

Related to the ESP implementation, the concepts of specific and generic embedded

detectors are introduced.

WORKING DEFINITION 4.1: SPECIFIC DETECTOR

An embedded detector designed to detect one specific attack.

WORKING DEFINITION 4.2: GENERIC DETECTOR
An embedded detector designed to look for signs of intrusive activity that can be

used to detect a group of attacks with certain common characteristics.

42

For example, a detector implemented indpectprogram that looks for long command-
line arguments in an attempt to exploit buffer overflows in that program would be consid-
ered a specific detector. A detector implemented in the Unix kernel that looks for long
command-line arguments passed to any program is considered a generic detector, and it

would detect not only the attacks agaiegict, but also against other programs.

The efficacy of generic detectors is one of the main premises of this dissertation because
they enable ESP to detect previously unknown attacks. The overall methodology was to
start by implementing different specific detectors. The expectation was that through this
implementation, some patterns would start to emerge, and those patterns would lead to the

creation of generic detectors.

4.3 Sources of information

We used the CVE (Common Vulnerabilities and Exposures) database [21, 89] as a
source of attacks for the implementation of specific detectors. The CVE is a database that
has been widely adopted by the intrusion detection community as a naming convention for
vulnerabilities and attacks against computer systems. It does not provide a classification or
taxonomy, but a unique identifier for each entry, pointers to sources of information, and a
best-effort guarantee that no duplicate entries exist in the database. Furthermore, itincludes
entries corresponding to multiple computer architectures, operating systems and types of
vulnerabilities. Because of these features, it can be used as a fairly complete, diverse and

recognized list of known vulnerabilities and attacks.

The specific detectors implemented map directly to entries in the CVE. Linking each
detector to a CVE entry facilitates discussion and reference, and ensures that no repeated
detectors are implemented. For the ESP prototype implementation, version 20000712 of
the database was used. This version of the CVE was published on July 7 of 2000 and

contained 815 records.

Detailed information about each CVE entry, including exploits, was gathered from

common sources on the Internet [e.g. 13, 106, 122, 130, 155].

43

As a special case, we implemented detectors for different variants of port scanning [52].
Port scans are not considered attacks by themselves but are commonly a prelude to an

attack; therefore they are useful to detect. Port scans do not have CVE numbers.

4.4 Implementation platform

The detectors in our prototype have been implemented in OpenBSD [103]. This version

of the Unix operating system was chosen for the following reasons:

e The source code is available, which makes it easy to instrument the detectors both in
the kernel and in system programs. Extensive documentation is available [87, 140]

about the internals of the kernel.

e The OpenBSD source code is managed and distributed as a single directory tree.
This makes it more manageable than Linux, for example, where the source code for
different components of the operating system is distributed as separate packages. The
OpenBSD source tree closely mimics the layout of the system itself, making it easy

to locate the code for different programs and subsystems.

e The OpenBSD project is known for its attention to security and has gone through an
extensive code security audit process. Most of the security problems for which detec-
tors were implemented had already been fixed in OpenBSD. Looking at the security
patches and at the change log for each file made it easier to locate the portions of
code where the problems existed, and helped in determining where the detectors for
each attack had to be placed. In some cases the code that fixed the problem could be
identified, helping in the determination of where to put the detector code for produc-
ing a notification. Additionally, because the problems themselves no longer existed,
it was easier to try attacks against the instrumented system without worrying about

the adverse effects they could have on the host.

As described in Section 3.1.4, although OpenBSD was used as the implementation
platform, we were able to build detectors for attacks that are specific to other platforms, or

for exploitations of vulnerabilities that have already been fixed in OpenBSD. Furthermore,

44

because most of the detectors were implemented with simple modifications or additions
to existing code, they should be relatively easy to port to other systems without extensive
redesign, particularly for other Unix-like systems.

For the particular implementation described in this document, the platform used was

OpenBSD 2.7 running on a computer with an Intel processor.

4.5 Reporting mechanism
All the detectors need a mechanism for generating reports when they detect an attack.

The following characteristics were determined to be desirable for the reporting mechanism:

Exclusivity: The reporting mechanism used by the embedded detectors should not be used
by any other system in the host. This ensures that detector reports can be obtained

from a single source without having to filter extraneous messages.

Efficiency: Because large numbers of embedded detectors will exist in a host, the reporting
mechanism needs to use a minimum of resources in terms of memory and CPU. Also,

reports need to be available as soon as possible after a detector generates them.

Note that because embedded detectors only generate reports when they detect an

attack, the generation of reports should be a relatively rare event on a normal host.

Security: It should be difficult for an attacker to disrupt the reporting mechanism, either
by inserting invalid messages, or by intercepting or modifying the messages that

detectors generate.

We considered the intra-host communication mechanisms described by
Balasubramaniyan et al. [8], but decided against them primarily because of the overhead
they require and because they are geared towards exchanging messages between separate
processes. For our purposes, we needed a mechanism for all the different detectors to pro-
duce messages that could then be accessed by a higher-level mechanism and that satisfied
the requirements given above.

We decided to implement the reporting mechanism for embedded detectors as a new

system call in OpenBSD and to base it partially on the kernel-messaging mechanism that

45

already existed in the operating system. It is implemented by a circular buffer in kernel
memory. Messages are written to the buffer using a new system call ealedog , and

read through a new device call&tkev/esplog

This mechanism satisfies the requirements we set almost completely. It is exclusive to
the detectors because it is completely separate from all other logging mechanisms in the
host. Also, it is efficient for generating messages from detectors within the kernel because
the call happens within the kernel context, and the only operation performed is copying the

message to the buffer. When called from user-level processes, a context switch occurs.

The messages are stored inside kernel memory, so they cannot be modified by an at-
tacker unless it has root privileges, and even then, it is a complex task to locate the buffer
within the kernel memory and overwrite the messages. Furthermore, messages disappear
from the buffer when they are read, so if an intrusion detection system is constantly reading

the messages, they exist in kernel memory for only a short period of time.

With respect to access control, thiev/esplog device provides exclusive access,
so that only one process can read it at a time. Therefore, if an intrusion detection system
opens the device and never closes it, no other processes can access the messages generate
by the detectors. Moreover, messages are never stored on a disk file or any other external
storage medium from the moment they are generated until they are read by an external

process.

This mechanism also has some drawbacks. User processes need to make a system call
(causing a context switch) when they need to generate a detector message, which may have
a negative impact on performance. Additionally, there is no fine-grained access control
in the current implementation of the reporting mechanism both for reading and for gen-
erating messages. This results in two problems. First, if an attacker manages to open
the/dev/esplog device before the intrusion detection system, he will be able to read
messages generated by the detectors. Second, any program can generate messages, SO i
is possible for an attacker to generate bogus messages to interfere with authentic detector

messages.

46

Note that these drawbacks are limitations of our current implementation of the de-
tector reporting mechanism and not of the ESP architecture itself. Mechanisms such as
rate-limiting on messages and capability-based access control [109] could be employed to
address these problems in future implementations.

Access tothesp _log system call and some other utility functions is provided through
a library we implemented for this purpose, calldesp . A full description of the func-

tions in thelibesp library is provided in Appendix B.

4.6 Methodology for implementation of detectors

We followed a consistent methodology for the implementation of all the specific detec-

tors:

1. Select a detector to implement. In the case of specific detectors, this corresponded
to selecting an entry from the CVE database. Most entries were selected at random

from the CVE to ensure coverage of different types of attacks.

2. Determine the applicability of the detector (see Section 4.7) to the implementation

platform. If the entry is determined to be non-applicable, return to step 1.

3. Obtain information about the entry, including advisories, exploit scripts, patches
and workarounds, etc. The first step was to check the references provided with the
CVE entry, followed by consulting other sources of information as described in Sec-
tion 4.3.

4. Determine if the attack corresponding to this entry would be detected by an existing
detector. In this case, mark it as “detected by” the existing detector and return to

step 1.

5. Examine the source code of the affected program, and determine where the vulner-
ability occurs. This was usually the most time-consuming step because it involved

studying and understanding the source code of the program.

6. Implement the detector. Once the vulnerability was understood the code for the de-

tector was added and the program was recompiled and tested.

a7

In some cases, the new detector can be implemented by extending the functionality
of another existing detector (for example, by adding code to check for a different
but similar case). In this case, the new detector is marked as “implemented by” the

existing detector.

Generic detectors were constructed as they became apparent during the implementation
of the specific detectors. For example, after a few specific detectors were built for checking
the length of command-line arguments in different programs, a generic detector for check-
ing the length of command-line arguments in the whole system became apparent and was

implemented.

4.7 Applicability of CVE entries

The CVE contains records for vulnerabilities and attacks of a wide variety of types, in-
cluding coding errors, race conditions, configuration errors, and unsecure features of soft-
ware. Also, it includes entries affecting a wide variety of operating systems and platforms,
including multiple versions of Windows and Unix, as well as platform-specific vulnerabil-

ities for routers, switches and other devices.

Therefore, it is clear that not all CVE entries are applicable for implementation of de-
tectors in the chosen implementation platform. From the CVE entries selected at random,

we accepted as implementable those that satisfied any of the following conditions:

e The CVE entry corresponds to an attack that can be launched against an OpenBSD
system with reasonable ease. This includes, for example, attacks that are launched
using any standard Unix command. It also includes many web-based attacks because
those can be launched against any web server, independent of the platform in which

it runs.

e The CVE entry corresponds to a program that exists in the OpenBSD ports collec-
tion [104], or that can be compiled and installed on OpenBSD without extensive

porting effort.

48

e The CVE entry corresponds to a vulnerability that is clearly described and whose
operation could in theory be observed and understood on an OpenBSD system even

when the specific affected programs do not exist in OpenBSD.

These criteria allow for the selection of CVE entries corresponding to a wide variety of

operating systems and platforms.

4.8 Design and implementation considerations for detectors

We developed a few guidelines for the design and implementation of embedded detec-
tors. These guidelines help to improve the maintainability and usefulness of the detectors.

Once an intrusion is detected, it would be relatively easy for the detector to react to it,
possibly even modifying the behavior of the program under attack. However, for research
purposes, the effects of detectors modifying the behavior of a program is harder to analyze,
so we decided to use the detectors only as observers. For this reason, an early design
decision was that detectors must not interfere with the program to which they are added.
This means that they do not have to modify any data that the program uses, nor alter its
flow in any way. We refer to this guideline as “the prime directive for detectors” [102].

To make them more understandable and easier to maintain, detectors must be as short
and unfragmented as possible. This means that detectors should not perform any unnec-
essary actions. In most cases, because detectors only need to test for certain specific con-
ditions, this is possible to achieve. There are some detectors that need to keep a certain
amount of state to compare between different points in the program. In those cases detec-
tors must be composed of more than one code fragment, but they should be easily identifi-
able.

We should be careful to notice cases in which the detector already exists in the program—
for example, many modern operating systems include code to detect SYN Flood [126]
attacks—to avoid adding unnecessary code to the system.

To facilitate testing and deployment, detectors must be configurable at compile time.
This means that the inclusion of the detectors into the program must be a compile-time op-
tion. We usually achieved this in C programs using approp#dtef directives, which are
set from the program®akefile . We decided to use different labels for each detector, so

49

they can be enabled or disabled individually. Our convention was to use macros of the form
ESPID, wherelD is the identifier of the detector. For example, the code corresponding to

the detector for entry CVE-1999-0103 is surrounded by:

#ifdef ESP_CVE_1999 0103
code for the detector
#endif

The ESPCVE_1999 0103 macro must be defined in thakefile for the detector to be
compiled.

Finally, to increase their effectiveness, detectors should look for exploitations of the
general vulnerability that allows the intrusion to take place. However, during our devel-
opment we have found that in some cases it is difficult to differentiate between normal
behavior of a program and its behavior under attack. This is particularly true when the
detector is being implemented in a version of the program in which the vulnerability has
been fixed. In these cases, we have resorted to some heuristics to detect attacks, such as
examining the data involved and comparing it with the data used by common attack scripts

for the corresponding entry.

4.9 Naming, testing and measuring detectors

Each detector is given a unique identifier. For detectors inspired by CVE entries, this
identifier is the corresponding CVE name. CVE names consist of the string “CVE”, the
year in which the entry was added to the database and a four-digit number separated by
dashes. For example, “CVE-1999-0016" and “CVE-2000-0279” are valid CVE names.

For other detectors (particularly generic detectors), the identifier consists of the string
“ESP” followed by a descriptive name, all in capital letters, with the words separated by
dashes. For example, “ESP-PORTSCAN” and “ESP-TMP-SYMLINK” are valid identi-
fiers.

During the initial implementation process, each detector implemented was tested by
launching the corresponding attack against the host in which the detector was implemented
and verifying that it detected the attack correctly. The trail of messages generated by the de-
tectors was monitored continuously, and when false positives occurred, the corresponding

detectors were tuned to prevent them, whenever possible.

50

An important aspect of the ESP detectors is their small size, so we were interested in
measuring them. Initially, we considered lines of code as a measure of detector size, but
discarded it because of its subjectivity. Instead, the unit we used for measuring detector size
was the “number of executable statements added to or modified in” (ESAM) a program to
implement the sensor or detector. The definition of “executable statement” was used as
provided in the Source Code Counting Rules described by Jones [72] and as implemented
by Metre [85].

For example, the detector shown in the right side of Figure 3.1 has an ESAM count of 2
because thé statement and the call tog_alert() each count as 1 executable statement.

As a measure of the “fragmentation” of each detector’s implementation, we used the
number of Blocks of Code Added or Modified (BOCAM). For example, the detector shown

in Figure 3.1 has a BOCAM count of 1, because all its code is in a single contiguous block.

4.10 Relationships between detectors
There are two main relationships that can exist between detectors. These relationships
were extracted from observations made during the implementation of the ESP prototype.
The “detected by” relationship exists between detectors A and B (in the form *A is
detected by B”) when the attack corresponding to detector A is also detected by B. This
relationship exists mainly when B is a generic detector.

When detector A is detected by B, we also say that detector B “covers” detector A.

WORKING DEFINITION 4.3: COVERAGE OF A DETECTOR

The coverage of a detector is the number of other detectors it covers.

During the implementation, we made the following observations about the “detected

by” relationship:

1. Itis transitive. If A is detected by B, and B is detected by C, then A is also detected
by C.

2. Not all detectors are covered by some other.

3. A detector can be covered by more than one other detector.

51

4. Multiple detectors may be covered by a single one.

5. If detector A is covered by B, A does not have code of its own in the implementation.
The exception to this rule is when A was implemented first, in which case it will have

code of its own in addition to being detected by B.

The second main relationship we observed between detectors is “implemented by.” It
exists between detectors A and B (in the form “A is implemented by B”) when detector
A is implemented by adding code to a previously existing detector B. This relationship
usually occurred between two detectors that correspond to closely-related intrusions, so
that existing code could be extended to detect a new attack.

During the implementation of the ESP prototype, we made the following observations

about the “implemented by” relationship:

1. Not all detectors are implemented by some other.
2. Multiple detectors may be implemented by a single one.
3. A detector was never implemented by more than one other detector.

4. If detector A is implemented by detector B, there will be some code in detector B
corresponding to A. This code was normally counted as belonging to detector A. For
example, if detector A was implemented by adding two statements to the existing
code of detector B, the ESAM count of A is 2, and assuming those statements are
contiguous, its BOCAM count is 1 (A's code block is counted additionally to the

BOCAM count of B).

4.11 Recording information about sensors and detectors

During the implementation of the ESP detectors, we found the need to document in
detail the process by which the detectors were implemented and their characteristics. Ini-
tially, free-form text files were used, but it soon became apparent that a more structured
format was necessary for later analysis. Furthermore, some characteristics of the detectors
are measurable or can be described using discrete values—for example, whether a detector

is stateless or stateful.

52

For this purpose, we developed an XML [12, 58] representation of information about

ESP detectors. This representation includes measurable and discrete information such as

the following:

Identifier of the detector.
Size of the detector in different units (ESAM and BOCAM).
Type of the detector (Stateless or Stateful).

Requirements of a detector (other detectors or programs that need to be present for

the detector to operate).

“Detected-by” and “Implemented-by” relationships (see Section 4.10).
Classification of data sources.

Description of the format of the messages produced by the detector.

Source directory in which the detector is implemented.

Classification of the vulnerability that corresponds to the detector (when applicable).

Operating system to which the intrusion is applicable.

It also includes free-form information about the detector, such as the following:

Description of the detector.

Cause of the associated vulnerability (when applicable).

Textual descriptions of data sources and how the data is observed.
A log of activity in the implementation of the detector.
Miscellaneous notes and comments.

Listing and description of files related to the implementation of the detector.

53

The format and contents of this XML representation was defined using a DTD (Docu-

ment Type Definition) defined for this purpose.

Figure 4.1 shows an example of the XML representation of a detector.

412 Case studies

As an initial proof of feasibility, two groups of detectors were selected for implementa-
tion: those for attacks against the Sendmail program, and those for network-based attacks.
We describe these two groups in detail as a representative sample of the issues encoun-
tered during the implementation process. Later sections present overall results and further

comments about all the detectors implemented.
4.12.1 Embedded detectors for network-based attacks

We implemented a number of embedded detectors for common network-based attacks.
We use the ternmetwork-based attack® encompass those that exploit both low-level
IP vulnerabilities and network-based vulnerabilities as described by Daniels and Spafford

[37]. In this section, we describe this implementation and the results obtained.
Detectors implemented

We chose network-based attacks because several interesting attacks of this type have
appeared over the last few years. Also, they are the type of attacks that intrusion detection
systems using network-based data collection usually detect, and our implementation shows

how effective embedded detectors can be for these attacks.

Table 4.1 lists the detectors that were implemented for network-based attacks during

the initial study phase.

In the next sections, we describe some representative attacks. We show the code of
the corresponding detectors (in many cases the code has been reformatted for space) and
explain where they have been placed within the operating system. We will see that detectors
are short and simple, yet provide advanced detection capabilities.

The lines of code added or modified by a detector have been highlighted in each code
section. The detectors have been wrappetiifitlef directives and in aif clause, so

they can be disabled both at compile time and at run time. We explored the possibility of

<?xml version="1.0" standalone="no"?>
<IDOCTYPE ESP-Component SYSTEM "ESP-Component.dtd">

<ESP-Component type="sensor_detector">

<ID type="CVE">CVE-1999-0164</ID>

<Description>
A race condition in the Solaris ps command allows an attacker to
overwrite critical files.</Description>

<Detector-Info>
<detector-type>Stateless</detector-type>
<detected-by>ESP-SYMLINK-CHOWN</detected-by>
<detected-by>ESP-SYMLINK-CHMOD</detected-by>
<detected-by>ESP-TMP-SYMLINK</detected-by></Detector-Info>

<Cross-Ref>ESP-SYMLINK-CHOWN</Cross-Ref>

<Notes>

<item> This was a well-known problem in old versions of
Solaris that allowed changing the ownership of arbitrary
files to root. The problem was a predictable filename in
/tmp (coupled with bad permissions in /tmp that allowed
any user to remove other users’ files) followed by a
chown() of that filename to root. By removing that file
and creating it as a symlink to another file after the
creation but before the chown(), it was possible to change
any file to root.</item></Notes>

<Files>
<file>
<file-name>exploit</file-name>
<file-description>
Exploit program</file-description></file></Files>
<Operating-System>
<0S-name>0OpenBSD</0OS-name>
<0S-version>2.7</0S-version></Operating-System>
<Operating-System type="vulnerable">
<0S-name>Solaris</OS-name>
<0S-version>2.3</0S-version>
<0S-version>2.4</0S-version>
<program>ps</program></Operating-System>
<Source-Directory type="vulnerable">/solaris/usr/bin/ps
</Source-Directory>
<Classification type="Krsul">2-7-1-4</Classification>
</ESP-Component>

Figure 4.1. Example of the XML representation of detector information.

54

55

Table 4.1
Summary of network-related detectors that were implemented during the initial study
phase. All but CVE-1999-0103 exist in the kernel code. The Type column indicates
whether the detector is stateful or stateless as defined in Section 3.1.3. The ESAM and
BOCAM columns indicate the sizes as defined in Section 4.9.

ID Description Type ESAM BOCAM
CVE-1999-0016 Land Stateless 2 1
CVE-1999-0052 Teardrop Stateless?2 1
CVE-1999-0053 TCP RST DoS Stateless2 1
CVE-1999-0077 TCP sequence number prediction Statele8s 1
CVE-1999-0103 Echo-chargen connections Stateless 4
CVE-1999-0116 TCP SYN flood Stateless 2 1
CVE-1999-0128 Ping of death Stateless3 1
CVE-1999-0153 Win nuke Stateless 3 1
CVE-1999-0157 Pix DoS Stateless 2 1
CVE-1999-0214 ICMP unreachable messages Statele8s 1
CVE-1999-0265 ICMP redirect messages Stateles$ 1
CVE-1999-0396 NetBSD TCP race condition Stateful 3 2
CVE-1999-0414 Linux blind spoofing Stateless3 1
CVE-1999-0513 Smurf Stateful 22 5
CVE-1999-0514 Fraggle Stateful 12 5
ESP-PORTSCAN Port scanning Stateful51 9

56

integrating the run-time control variables to the kernel parameters mechanism available in
OpenBSD through which some kernel parameters can be modified at run time. The ability
to disable the detectors at runtime may not be desirable in a production system because
it offers the possibility for an attacker to disable the detectors if he manages to obtain
sufficient privileges in the system. However, for the purposes of testing, the capability of

enabling and disabling detectors at runtime was considered appropriate.
Stateless Detectors

Twelve of the 16 detectors in Table 4.1 are stateless. Those detectors test if an attack
condition is met and call the alert mechanism. They use information from the network stack
and are placed within its execution path. An example of this type of attack is the Land [18]
attack (CVE-1999-0016). It consists of a TCP SYN packet sent to an open port with the
source address and port set to destination address and port. OpenBSD filters those packets
when processing SYN packets in the TCFSTEN state and drops them. The detector
exploits this and is placed before the packet drop, so it is effectively only a single statement
(with additional code for detector management).
case TCPS_LISTEN: {

. |f (ti->ti_dst.s_addr == ti->ti_src.s_addr) {

[* ESP */
#ifdef ESP_CVE_1999 0016

if (esp.sensors.land)

esp_logf("CVE-1999-0016: LAND attack \n");
#endif

}

goto drop;

The CVE-1999-0103 (Echo-chargen denial-of-service attack [17]) detector was imple-
mented within thenetd [143] program and not in the kernel. Also, it is longer than other
detectors because it has to query additional information that is not readily available outside
the kernel.

In this group of detectors we found the first instance of an “implemented-by” relation-

ship. The PIX DoS attack [24] (CVE-1999-0157) exploits the same vulnerability (failure

57

to handle a special case of overlapping IP packets) as Teardrop [18] (CVE-1999-0052) but
with a variation to bypass a PIX firewall. In this case, the ESAM count indicates the num-
ber of statements added to or modified in CVE-1999-0052 to implement the detector for
CVE-1999-0157, and the BOCAM count of 1 indicates that those statements are contigu-
ous.

SYN flooding [126] is a denial-of-service attack based on exhaustion of the resources
allocated in a host for half-open TCP connections. The detector for SYN flooding was
implemented as stateless. OpenBSD does resource allocation for half-open connections and
drops old connections after a threshold has been reached. The detector triggers when such
a connection is dropped. This shows an advantage of embedded detectors: they can use the
defense mechanisms of the operating system itself and combine them with detection.

Other attacks are ICMP unreachable messages (CVE-1999-0214) and ICMP redirects
(CVE-1999-0265), both of which allow an attacker to cause a denial-of-service attack by
faking ICMP control messages. The problem is that those faked ICMP messages may
be indistinguishable from legitimate messages created by hosts at the end points of the
connection or by interior routers. These type of attacks are inherent to the design of TCP/IP.
OpenBSD tries to protect itself from malicious messages with extensive checks against its
local state and we placed the detectors after those, i.e. that packets that are accepted by
OpenBSD will not raise an alarm, while rejected will. Nevertheless cleverly forged packets

still may exploit those vulnerabilities.
Stateful Detectors

Stateful detectors accumulate data about events that indicate attacks. In some of our
detectors, a separate timer routine reads these data and triggers an alarm if a threshold has
been met. Two typical examples are the Smurf and Fraggle [19, 69] attacks. They try to
flood the host with packets of a certain type and make it unavailable to its users.

Those attacks rely on traffic amplification mechanisms. Traffic amplification is based
on mechanisms that generate a response significantly larger than the request that originates
it. This enables a single attacker to generate the amount of traffic necessary to exceed the

victim’s capacity. Stateless detectors may detect the packets that use those mechanisms to

58

generate the attack. However, often the attacked site and the amplifying site are different,
so a different detector for the victim host is necessary. Identifying the vulnerability at the
amplifying site can assist in tracing the attack.

The Smurf attack [19] sends ICMP ECHRESPONSE packets. Those do not differ
from legitimate packets (for example, in response fwreg command [145]) except that
there is no program expecting them. For implementing the detector, we assumed the se-
mantics of theging program, that stores its Process ID in the ICMP ID field to identify its
replies. Based on that technique, we store the Process ID of all ICMP raw sockets in the
socket data structure when they are created:
case PRU_ATTACH:

/*‘ .I'ESP */
#ifdef ESP_CVE_1999 0513

if (esp.sensors.smurf && ((long) nam) == IPPROTO_ICMP)

S0->s0_pgid = curproc->p_pid;

#endif
We check this information at arriving ICMP echo replies and increase a counter for un-
requested echo replies if there is no matching socket (this is done #sthesmurf()
function, not shown).
case ICMP_ECHOREPLY:

/* ESP */
#ifdef ESP_CVE_1999 0513
if (esp.sensors.smurf) {
if (esp_smurf(ip, icp))
goto freeit;
goto raw;
¥
#endif

The technique used above shows another advantage of embedded detectors: additional
information can be made available when necessary for the purposes of detection.

The alarm for Smurf is rate-limited. A legitimate usemhg will probably be inter-
rupted when there are still echo reply packets in the network to be delivered to the host, and
those packets should not raise an alarm although they do match the signature. A network
layer timer that runs for three seconds examines the counter and raises an alarm only if it

exceeds a threshold.

59

Port scanning [52] is a probing technique used to determine what ports are open on a
host, and is commonly performed as an exploration phase by an attacker. For this reason,
although port scans themselves are not attacks, we consider it desirable to detect them. We
implemented a port scan detector that reacts to all known types of port scanning techniques
(including stealth and slow scans) by using the state of the network stack. Also, it has more
advanced monitoring and reporting capabilities because it reports multiple probes as one

scan and identifies its type.

The NetBSD race attack detector (CVE-1999-0396) is a special case of the port scan
detector and uses its reporting routine. For this reason, CVE-1999-0396 is “detected-by”
ESP-PORTSCAN.

A detailed description of all the detectors for network-based attacks is available [75].

Testing the detectors

A test suite of exploit programs was assembled to test the detectors. The exploit pro-
grams were acquired preferably from the same sources that published the vulnerabilities
when they made them available. If they were not available or not working, we wrote our
own exploits according to the descriptions. The test suite was run supervised from a remote

machine on the same local area network (LAN) and all attacks were detected reliably.

An independent tester ran the same set of attacks. The attacks were run over the campus
network, with different network technologies and possibly even filtering in between. The
results were that only a small number of attacks arrived at the target. This experience shows
that most attacks are of rather low quality and are dependent on the network environment.
The packet log shows that all received attacks were detected. The test was repeated from a

machine on the same LAN and the results match those of the supervised test.

In the testing period the host reported some attacks not generated as a controlled exper-
iment, notably port scans. To verify their correctness, they were compared to the packet

log and all could be verified as real events.

60

4.12.2 Embedded detectors for sendmail attacks

Sendmail [30] is the most widely used mail-delivery agent on Unix machines. A hum-
ber of security problems have been encountered in sendmail over the years, and many of

them can still be found in systems connected to networks [23].

Sendmail is a complex user-level process with multiple clearly identifiable vulnerabili-
ties in its past. For this reason, it was an ideal candidate for the implementation of detectors

outside the kernel.
Detectors implemented

We implemented the detectors in version 8.10.1 of sendmail which is the version in-
cluded with OpenBSD 2.7. During the initial test phase, 11 sendmail detectors were im-

plemented, and they are summarized in Table 4.2.

In the next sections we will describe in more detail some of these detectors. As with
the network detectors described in Section 4.12.1, the sendmail detectors are surrounded
by #ifdef statements that allow to disable or enable them individually at compile time. No

runtime mechanism exists for disabling or enabling these detectors.
Stateless detectors

Seven of the 11 sendmail detectors implemented in this phase were stateless. Most
of the vulnerabilities to which these detectors correspond have been fixed in the newer
versions of sendmail. In some cases the new code specifically looks for and avoids the
corresponding attacks. In those cases, the detectors consisted of simple checks or only the
calls to the reporting mechanism. This is the case for most of the detectors that consist of

only one or two executable statements.

As an example, we present the detector for CVE-1999-0096 corresponding to the use of
the “decode” alias to overwrite arbitrary files on a system. This alias is no longer enabled
by default in new versions of sendmail, but because there are still old versions of send-
mail in use on the Internet, it is important to detect attempts to use those aliases. In this
case, the detector specifically looks for mail sent todbeode address or the equivalent
uudecode address:

61

Table 4.2
Summary of sendmail-related detectors implemented during the initial study phase. All
but CVE-1999-0057 exist in the sendmail program itself. The Type column indicates
whether the detector is stateful or stateless as defined in Section 3.1.3. The ESAM and
BOCAM columns indicate the sizes as defined in Section 4.9.

ID Description Type ESAM BOCAM

CVE-1999-0047 Buffer overflow vulnerability inStateful 10! 7t
sendmail 8.8.3/8.8.4

CVE-1999-0057 Multiple vendor vacation(1) vulneraStateless 2 1
bility

CVE-1999-0095 Debug command in sendmail Statelesk 1

CVE-1999-0096 Sendmail decode aliases can be u§tdteless 6 2
to overwrite files

CVE-1999-0129 Sendmail group permissions vulnestateless 2 1
ability

CVE-1999-0130 Sendmail Daemon Mode vulnerabiGtateful 3 3
ity

CVE-1999-0131 Sendmail GECOS buffer overflostateless 1 1
and resource starvation

CVE-1999-0204 Execution of root commands usingtateful 4 2
malformed identd responses

CVE-1999-0206 MIME buffer overflow in sendmailStateful 5 8
8.8.0and 8.8.1

CVE-1999-0478 Denial-of-Service attack using eXStateless 1 1

cessively long headers
CVE-1999-0976 Sendmail allows users to reinitializ8tateless
the alias database, then corrupt the
alias database by interrupting send-
mail

—_
—_

1 These counts include a subroutine that is shared with CVE-1999-0206 that consists
of 4 executable statements.

62

a->g_next = al;

a->(_alias = ctladdr;

#ifdef ESP_CVE_1999 0096

{ if (a = NULL && a->q_user != NULL) {
if((stremp(a->g_user,"decode")==0)||

(strcmp(a->q_user,"uudecode")==0)) {
esp_logf("CVE-1999-0096: name="%s’ \n", a->q_user);
}
}
}

#endif

Note that this detector works even if the addresses it looks for do not exist on the system
and shows one of the advantages of embedded detectors: they can look for attempts to

exploit vulnerabilities that do not exist on the host being monitored.

Stateful detectors

Stateful detectors are more complex than stateless ones. In the simplest cases, the
detector has to collect some piece of information at an early stage before being able to
make a decision later on. For example, the detector for CVE-1999-0130 needs two pieces
of information to determine that an attack is occurring: the sendmail program needs to be
run under the namemtpd and the user that invoked it must notio®t. Because these two
pieces of information are available at different points in the program, the detector is split in
two code segments. The first one sets a flag when sendmail is beingsompas

#ifdef ESP_CVE_1999 0130
bool esp_RunAsSmtpd = FALSE;
#endif

else if (stremp(p, "smtpd") == 0) {
OpMode = MD_DAEMON;

#ifdef ESP_CVE_1999 0130
esp_RunAsSmtpd = TRUE;

#endif

}
The second code segment is executed in the same block in which sendmail already gener-
ates an error message when “daemon mode” is requested by a non-root user, and generates

the corresponding alert:

63

usrerr("Permission denied");
#ifdef ESP_CVE_1999 0130
if (esp_RunAsSmtpd) {
esp_logf("CVE-1999-0130: user=%d \n", RealUid);

}
#endif

finis(FALSE, EX_USAGE);

A more complex example of a stateful detector is the one for CVE-1999-0047, which
detects attempts to exploit a buffer overflow in the MIME-decoding subroutine of sendmail
8.8.3/8.8.4. This detector is interesting because it illustrates how in some cases it is difficult
to differentiate between normal and intrusive behavior.

Under normal circumstances, ti@me7to8() function of sendmail uses a fixed-
length buffer that gets repeatedly filled and flushed as necessary while decoding a MIME
message. In the vulnerable versions, a typo in the code (checking the wrong variable to
see if the buffer was already full) prevented the buffer from being flushed, allowing the
program to keep writing past the end of the buffer and causing the buffer overflow.

Once the problem was fixed, the buffer is correctly flushed every time it fills. However,
it is impossible in the fixed code to detect an attack against this vulnerability by looking at
the behavior of the program because both regular and attack data behave exactly the same:
they fill the buffer, which gets flushed, and the process repeats as many times as necessary.

Therefore, to build this detector we resorted to heuristics. In this particular case, we
look at the data that are being written into the buffer and compare them against the data
used by the most common exploit script that was circulated for this vulnerability. This is

done in the functiorsp _.mime_buffer _overflow()

#ifdef ESP_CVE_1999 0047
char
esp_mime_buffer_overflow(char c, int filled, char *msg) {
char egg[]=
" \xeb \x37 \x5e
(more binary data omitted)
static int pos=0;
static int count=0;
if (esp_match_char(egg, c, &pos, &count, 0x00, 0) && filled) {
esp_logf("%s \n", msg);
pos=0;

64

}

return c;

}
#endif

This subroutine does a character-by-character matching against the binary “egg” used by
the exploit script and returns success when a complete match is found. In a more complex
version of the detector, a fuzzy or partial match could be done, or the search could look for
more than one binary string in the data.

From themime7to8() function, theesp _mime_buffer _overflow() function is

called every time a character is inserted in the decoding buffer:

*fbufp = (c1 << 2) | ((c2 & 0x30) >> 4);
#ifdef ESP_CVE_1999 0047

esp_mime_buffer_overflow(*foufp, esp_filled, "CVE-1999-0047");
#endif

An additional heuristic used to signal an attack is that the decoding buffer must have
been filled and flushed at least once when the binary string is encountered (otherwise a
buffer overflow would not have occurred in the vulnerable code), so the detector also keeps

track of how many times the buffer has been filled:

putxline((char *) fbuf, foufp - fbuf, mci, PXLF_MAPFROM);
foufp = fbuf;

#ifdef ESP_CVE_1999 0047
esp_filled++;

#endif

}

This detector keeps track of several pieces of information available only inside the
sendmail code, which shows the advantage that embedded detectors have by being able to
access internal information of the program. This detector also shows one of the drawbacks
of the embedded detectors approach: when the vulnerability for which the detector is built
no longer exists in the code, it can be difficult to differentiate between normal behavior of
the program and behavior under attack. This problem is common to all existing signature-

based intrusion detection systems.

65

Testing the detectors

Each detector was tested using the exploit scripts available for each vulnerability. In
most cases the exploit scripts were available from the same sources in which the problem
was described, but in others we had to develop our own exploits. Each detector correctly

signaled the attacks when they were launched using the exploit scripts.

4.13 Detectors implemented

After the implementation of the two case studies described in Section 4.12, the imple-
mentation continued by drawing random entries from the CVE, and implementing detectors
for those that were deemed applicable according to the criteria set in Section 4.7. In to-
tal, 291 CVE entries were examined, of which 161 were not applicable, resulting in the
implementation of 130 specific detectors. During this process, 20 generic detectors and 3
“pure” sensors (that collect and report information of some kind, but do not perform any
detection) were designed and implemented, resulting in a total of 153 sensors and detectors

implemented. They are listed in Tables A.1 and A.2.

In this section we present some information about the results of the implementation.

4.13.1 By vulnerable platform or program

Because detectors can be used to look for both successful and unsuccessful attacks,
during the implementation process it was possible to build detectors for attacks that are
specific for platforms other than OpenBSD, or that existed in multiple platforms and oper-
ating systems.

As mentioned in Section 3.1.4, this offers the possibility of building a “universal hon-
eypot.” However, this is not the main purpose of ESP. By building detectors for different
attacks against multiple platforms, we show that the ESP architecture could be successfully
applied on almost any computing platform, and aids us in gaining information about the
types of vulnerabilities that are commonly responsible for computer security problems.

Figure 4.2 shows the distribution of detectors built according to the original vulnerable
platform or program. This graph does not show the generic detectors, which are able to

detect attacks possibly related to multiple platforms.

66

(multiple) Allaire Spectra
(multiple) amd
(multiple) AntiSniff
(multiple) CDE
(multiple) crond
(multiple) Delegate
(multiple) FormMail
(multiple) htdig
(multiple) httpd
(multiple) jj

(multiple) lpr
(multiple) MySQL
(multiple) NCSA httpd
(multiple) PHP
(multiple) procmail
(multiple) rdist
(multiple) RealServer
(multiple) rlogind
(multiple) rsaref
(multiple) squid
(multiple) Super
(multiple) test-cgi
(multiple) UDP
(multiple) vacation

IS (multiple) vi
© (multiple) WWWBoard
2 (multiple) XFree86
s Ascend CascadeView
» Axis Network Document Server
© BeOS
é Cayman
Rl Cisco PIX
o] HP-UX
0. Nortel Networks Nautica Router
OpenBSD

SCO OpenServer

SunOS

(multiple) cfingerd
(multiple) FastTrack Web Server
(multiple) Kerberos5
(multiple) ssh
(multiple) StarOffice
AIX

NetBSD

UnixWare

(multiple) ICMP
(multiple) inetd
(multiple) IP
(multiple) KDE
(multiple) kernel
FreeBSD

(multiple) TCP
Linux

Irix

(multiple) sendmail
Solaris

Windows . ‘ ‘ 1

5 10 15 20 25 30

Number of specific detectors

W HHH””””””””””””UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

o

Figure 4.2. Distribution of specific detectors by vulnerable platform. This indicates the

platform or program to which the intrusion for which the detector was implemented was

applicable. Entries marked as “(multiple)” correspond to programs that exist in several
operating systems.

67

4.13.2 By implementation directory

All the detectors were implemented inside the standard OpenBSD source code directory
(/usr/src/) or inside the corresponding section of the OpenBSD ports collection (stored
in directory/usr/ports/). We recorded the specific directory in which each detector
was implemented, and the histogram in Figure 4.3 shows the overall counts. The graph
shows both the number of generic and specific detectors that were implemented in each
directory. Not all the detectors have an implementation directory. In particular, detectors
that do not have an implementation of their own because they are covered by others do not
appear in this table.

Figure 4.3 clearly shows that there are four major individual contributors: the Apache
HTTP daemon/(sr.sbin/httpd), the networking section of the OpenBSD kernel
(/sys/netinet), the general section of the OpenBSD kerrsy$/kern), and the
sendmail program/gnu/.../sendmail/). These four directories account for more
than 70% of the detectors. Whitetpd has the largest contribution of specific detectors,
/sys/kern has the largest amount of generic ones.

The large representation of detectors indbadmail andnetinet directories could
be partially attributed to the intentional selection of these types of detectors for the initial
test runs. However, these two classes were selected precisely for the large number of attacks
that have occurred in them over the years. At least for the network attacks, the number of

detectors increased considerably even after the test phase.

4.13.3 Bysize

One of the distinguishing characteristics of the ESP architecture is its ability to perform
effective detection with little overhead on the system, both in terms of CPU and memory
usage. Because the detectors exist at the point in the programs where the information
necessary for detection is readily available, they can be small in size.

As described in Section 4.9, we used two metrics for the size and fragmentation of the
detectors: Executable Statements Added or Modified (ESAM) and Blocks of Code Added
or Modified (BOCAM), respectively. Figures 4.4 and 4.5 show the distribution of detector

sizes in these two units. We can see that in both measurements, the distribution is heavily

68

lusr.shin/named/nslookup
Jusr.sbin/lpr/lpr
Jusr.sbin/arp
Jusr.shbin/famd
/usr.bin/vacation
/usr.bin/man
Isys/vm

Isys/ufs
Isbin/ping
Nlibexec/tftpd
libexec/telnetd

llibexec/rlogind

/libexec/ftpd
/libexec/fingerd
/bin/mt :
Jusr/ports/x11/kde O Gengr!c
B Specific

lust/ports/security/rsaref
lusr/ports/security/antisniff

Jusr/ports/mail/procmail

Implementation directory

lusr/ports/databases/mysql
Isbin/dip

lusr.sbin/inetd

lusr.sbin/cron

lusr.bin/ssh

lib/libc/net

llib/libc/gen

/X11
/gnu/usr.sbin/sendmail/sendmail
Isys/kern

Isys/netinet

Jusr.sbin/httpd

0 5 10 15 20 25 30 35
Number of detectors

Figure 4.3. Distribution of detectors by implementation directory. For space
considerations, theisr/src ~ prefix has been dropped on all entries except those within
lusr/ports

69

45

W Specific
O Generic

Number of detectors

1 4 7 10 13 16 19 22 25 28 31 34 37 40 ... 151
Executable statements added or modified

Figure 4.4. Distribution of detector sizes (ESAM metric).

biased toward the low end of the scale, with 78% of the detectors being 4 ESAM or less
in size. The majority of the detectors are small in size and non-fragmented. Figure 4.6
combines the ESAM and BOCAM measurements and shows the count of detectors against
each combination of ESAM and BOCAM values. This graph confirms the small-size, non-

fragmented nature of most detectors.

All the detectors implemented account for 507 ESAM, resulting in an average detector
length of 5.57 ESAM (this counts only the 91 detectors that have an actual implementa-
tion; the average counting all the detectors is 3.31 ESAM). All the detectors are under 50
ESAM in size, except for ESP-PORTSCAN. This is the most complex of the detectors im-
plemented: it includes a sensor that collects information about suspicious packets received
by the host and periodically traverses the list and produces the port-scanning reports. The
same sensor is used by other detectors which make a decision based on packets received by

the monitored host.

70

80

70

60

50

M Specific
O Generic

40 -

30

Number of detectors

20

10 ~

O T T - T _ T - T T = T - T =
1 2 3 4 5 6 7 8 9
Blocks of code added or modified

Figure 4.5. Distribution of number of contiguous code blocks per detector (BOCAM
metric).

These results show that embedded detectors can be added to existing programs with
few modifications to the code, and that they do not add significantly to the program they

monitor in terms of size.
4.13.4 By type

By the way they operate, detectors can be classified as stateless or stateful. Figure 4.7
shows the number of each type that was implemented. We can see that the number of state-
less detectors (both specific and generic) is considerably larger than that of stateful ones.
This is a good result because stateful detectors usually are larger and more complex than
stateful ones, as evidenced by the average ESAM count for stateful detectors being 19.14,
whereas it is 2.44 for stateless detectors. Even without counting ESP-PORTSCAN (which
single-handedly contributes 151 ESAM to the count), the average for stateful detectors is 9
ESAM.

Stateful detectors are individually more powerful than stateless ones, but the simplicity

and small size of the stateless detectors makes it possible to put them anywhere in the

71

Blocks of Code Added or Modified

1 10 100 1000
Executable Statements Added or Modified

Figure 4.6. Graph of detector sizes by combination of the ESAM and BOCAM metrics.
Bubble size represents the number of detectors that have each combination of parameters.
The horizontal axis has been made logarithmic to better display the different values at the

lower end of the scale.

72

Stateful

O Generic
H Specific

Type of detectors

Stateless

0 20 40 60 80 100 120 140 160
Number of detectors

Figure 4.7. Distribution of detectors by type.

monitored component (even inside critical sections), giving the ESP architecture the ability
to perform its detection functions without the need to keep as much state as traditional

intrusion detection systems.

4.13.5 By data sources used
During the implementation, we recorded the sources from which each detector obtains
information. These numbers are summarized in Figure 4.8. The types of data sources are

defined as follows:

Network data: Data obtained from the network or from a network connection.
Examples: contents of TCP packets received by the host; contents of ARP requests
being propagated in the network.

System state: Information about the current internal state of the system.
Examples: list of processes currently running on the system; number of currently
open network connections.

User-provided data: Data provided by the user of a program.
Examples: length of command-line arguments given to a program; contents of a

configuration file created by the user.

File system state: Information about the current state of the file system.

73

Program state

Application data

File system state -
y O Generic

l Specific

User-provided data

Type of data source

System state

Network data

0 10 20 30 40

Number of detectors

Figure 4.8. Distribution of detectors by type of data sources used. Some detectors use
more than one data source.

Example: permissions of a file, existence of symbolic links in a path.

Application data: Information about data being used internally by a program.

Examples: length of an internal buffer, return value of a library function call.

Program state: Information about the current state of a program.

Examples: number of times an action has been attempted, rate of requests of a certain

service.

The numbers in Figure 4.8 show that at least in our implementation, a large fraction of
attacks involve data coming off the network, which is a reflection of the large number of
network-based attacks that exist (and which is also reflected in the large number of detectors
in the HTTP daemon and the networking layers, as shown in Figure 4.3). Also interesting
is the large number of detectors with “System State” data sources. This is an indication
that many problems are caused by programs not checking the conditions on the system
(for example, the length of a user name or an environment variable) before performing an

action. The third largest group is “User-provided data,” which corresponds to detectors for

74

attacks that possibly could be prevented if the programs checked user input for validity (for
example, command-line arguments) before using it. Although these comments are based
only on the numbers encountered in our implementation, they intuitively correspond to the

causes of most vulnerabilities seen in production systems.

4.13.6 By vulnerability type

Each detector is also classified according to the type of vulnerability that made the
corresponding intrusion possible. For this classification we used the taxonomy of software
vulnerabilities proposed by Krsul [78]. The taxonomy was used as presented originally:
only category 2 (“Environmental assumptions”) is expanded into sub-levels, and categories
1 (“Design”), 2 (“Coding faults”) and 4 (“Configuration errors”) are considered only at their
top level. Figure 4.9 shows the distribution of detectors according to this classification. All
the categories used in this dissertation are listed in Appendix C.

We can see that the largest number of detectors correspond to classes 2-2-1-1 (User
Input — Content — is at most x), and 2-5-1-1 (Command Line Parameters — Content —
length is at most x) which correspond to buffer overflow problems. Also, note that eight of
the generic detectors have a classification of “n/a,” which indicates that these detectors do
not correspond to a specific type of vulnerability, but that can detect intrusions that exploit
multiple types of vulnerabilities.

Additions to the taxonomy

The specific instantiation of the taxonomy presented by Krsul [78] was developed using
the data from the vulnerability database developed in his work. When assigning categories
to the ESP detectors implemented, we encountered some of them that could not be assigned
to any of the existing categories. For this reason, we created some new categories as ex-
tensions to the original classification (this type of extensions was predicted by Krsul). All
the new categories belong to the top-level category 2 (“Coding faults”) and are described

below.

(2-4-1-4) Network stream — Content — matches a regular expressioVulnerabilities

in this class correspond to those in which the programmer assumed that the data

75

2-1-4-1
2-3-2-3
2-4-1-4
2-4-2-1
2-7-1-2
2-7-1-4
2-7-1-6
2-7-2-1
2-7-2-3
2-9-1-3
2-10-1-1
2-10-2-3
2-10-4-1
2-2-1-2
2-10-2-2
2-12-1-1
2-10-2-1
2-10-2-4
2-2-1-4
2-12-1-2
unknown
2-7-1-5
2-2-1-3
2-6-1-1
2-3-2-1
n/a

1

3
2-12-2-1
2-12-2-2

O Generic
W Specific

Vulnerability classification

2-5-1-1
2-2-1-1

0 5 10 15 20 25
Number of detectors

Figure 4.9. Distribution of detectors by type of vulnerability according to the taxonomy
proposed by Krsul [78]. See Appendix C for a listing of the categories.

76

read from a network stream would always match a certain pattern or have a certain

structure.

(2-4-2-1) Network stream — Socket — is the same object as in this case, we identi-
fied a new attribute (2-4-2: Socket) as well as a new assumption (“is the same object
as x”). Wulnerabilities in this class correspond to those in which the programmer
assumed that two distinct operations on a network socket will access the same con-

nection, and that the socket will be available.

(2-7-1-6) File — Name — length is at most xVulnerabilities in this correspond to those
in which the programmer assumed that path names would always be under a certain

length.

(2-10-1-1) Network IP packets — Source address — is different than destination ad-
dress Corresponds to vulnerabilities caused by the programmer assuming that the
source and the destination address on an incoming packet are always different. Note
that the attribute of this class (source address) was one of the attributes predicted

by Krsul in his work.

(2-10-2-2) Network IP packets — Data segment — is a proper fragmenCorresponds
to vulnerabilities caused by the programmer assuming that a packet containing an IP

fragment would be properly formed.

(2-10-2-3) Network IP packets — Data segment — corresponds to a fully established
connection Corresponds to vulnerabilities caused by the programmer assuming that
incoming packets correspond to a connection that has already been completed suc-

cessfully (this is not always the case, particularly during the initial TCP handshake).

(2-10-2-4) Network IP packets — Data segment — length is at most ¥ulnerabilities
caused by the programmer assuming that the contents of a packet will not exceed a

certain length.

77

(2-10-4-1) Network IP packets — TCP sequence number — is in proper sequence
This is another case of a new attribute (TCP sequence number). Corresponds to
vulnerabilities caused by the programmer assuming that incoming packets will have

the correct sequence number.

These categories are minor additions to the original taxonomy because most of them
were new assumptions about previously identified attributes. As can be seen in Figure 4.9,
none of these categories had a large representation in the ESP detectors implemented, with

2-10-2-4 having the largest number of instances (3 detectors).

4.13.7 By detection and implementation rates

As described in Section 4.10, some detectors are “detected by” others, and some detec-
tors are “implemented by” others. These relationships are interesting because they indicate
the capabilities of the detectors that implement or cover others.

Figure 4.10 shows the distribution of detectors by their detection rate, as defined in Sec-
tion 4.10. We can see that almost all the detectors in the list are generic detectors. Of the
top six detectors, two (ESP-ARGS-LEN and ESP-LONGURL) correspond to buffer over-
flow vulnerabilities, two (ESP-TMP-SYMLINK and ESP-SYMLINK-OPEN) correspond
to race conditions or filename-binding vulnerabilities, and one (ESP-URI-DOTDOT) cor-
responds to filename permissions checking vulnerabilities.

Notice that the only detector that covers other generic detectors is ESP-TMP-SYMLINK.
This detector is a generalization of ESP-SYMLINK-OPEN, ESP-SYMLINK-CHMOD,
ESP-SYMLINK-CHOWN and ESP-SYMLINK-CONNECT; therefore it covers the func-
tionality of all four of them.

Figure 4.11 shows the two detectors that implement others: ESP-BADURLS (a generic
detector that implements multiple detectors for web-based attacks) and CVE-1999-0052
(which implements CVE-1999-0157, corresponding to a similar attack).

4.14 Auxiliary components

In addition to the detectors themselves, there were two major components of the ESP

implementation: the logging mechanism for the detectors, and the ESP library, both de-

78

CVE-1999-0052
CVE-1999-0323
CVE-1999-0746
ESP-FILE-INTEGRITY
ESP-GETNAMEINFO
ESP-PORTSCAN
ESP-SMTP-CMD-OVERFLOW
ESP-SYMLINK-CHMOD
ESP-SYMLINK-CHOWN

o ESP-SYMLINK-CONNECT —
© O Generic
8 ESP-BADMODE-ROOT-FILE -
Q

8 ESP-FTP-CMD-OVERFLOW B Specific |

ESP-LONGGECOS
ESP-LONGICMP
ESP-TCP-DROPPED-PACKETS
ESP-ENV-LEN
ESP-LONGURL
ESP-URI-DOTDOT
ESP-SYMLINK-OPEN
ESP-ARGS-LEN
ESP-TMP-SYMLINK |

0 5 10 15 20
Coverage

Figure 4.10. Distribution of detectors by coverage, as defined in Section 4.10.

CVE-1999-0052
O Generic
H Specific
ESP-BADURLS
0 5 10 15 20

25

Detector

Number of detectors it implements

Figure 4.11. Distribution of detectors by number of detectors they implement, as defined
in Section 4.10.

79

Table 4.3
Information about the implementation of the logging mechanism, the ESP library, and
auxiliary code for the networking detectors. Thsr/src prefix is omitted from the
implementation directories. The ESP library does not have a BOCAM count because it is
implemented as an independent component.

Component ESAM BOCAM Implementation directory
Logging mechanism 139 20 sys/kern , sys/arch
ESP library jbesp) 135 n/a lib/libesp , /lib/libc
Networking code 21 1 sys/netinet

scribed in Section 4.5. Also, code was added to the networking layers of the OpenBSD
kernel to provide support functions for some of the sensors and detectors that exist in that

layer.

Table 4.3 shows some information about these three auxiliary components. We can see
that the whole ESP logging mechanism (which adds the eswlog system call, plus
a new device filddev/esplog from which messages can be read) is shorter than the
ESP-PORTSCAN detector (see Table A.2). The ESP library, which includes 12 support
functions plus the access point for thep _log system call, has a similar size at 135
ESAM.

Some parts of the logging mechanism are in the architecture-specific portions of the
kernel Gys/arch). This is primarily for early initialization of the memory needed by
the circular buffer used in the logging mechanism. The rest of the code is architecture-
independent. For this reason, the logging mechanism could be ported with relative ease
to other versions of OpenBSD, and possibly to other BSD versions of Unix (such as
NetBSD [94] and FreeBSD [50]).

The ESP library is implemented mostly as a separate library, except for the interface
to theesp log() system call and thesp _logf() function. These were added to the
standard C librarylipc) to make it possible for other libraries to access them and to
allow detectors in any program to generate ESP messages without having to link against an

additional library (unless the additional functionality is needed).

80

The support code for networking detectors adds some initializations and timers used for

bookkeeping.

4.15 Comments about the ESP implementation

The ESP implementation, as described in this chapter, shows the feasibility of building
an intrusion detection system based on the ESP architecture. With comparatively little
code, it was shown possible to implement an intrusion detection system with considerable

detection capabilities.

As an example, the generikgrn subdirectory) and networkiétinet subdirectory)
portions of the OpenBSD 2.7 kernel consist of roughly 88,830 raw lines of C code, includ-
ing comments, blank lines and preprocessor directivédl the ESP detectors that have
been implemented in those sections of the kernel total approximately 1,340 lines of code
(again, including comments, blank lines and preprocessor directives), which corresponds
to 1.5% of the size of the kernel code, yet detect 54 specific attacks, and include 9 generic

detectors.

Because the purpose of this ESP implementation was to explore the capabilities and
issues related to the architecture, we implemented some detectors that would probably not
be needed in a production system, such as detectors for attacks that do not correspond to
the implementation architecture. However, by doing so we demonstrated that the concepts
of the ESP architecture can be used on a wide variety of platforms to detect a wide variety

of attacks.

The most significant drawback in our implementation of the ESP architecture was the
cost of the implementation in terms of effort and time. Because we were modifying an
existing system, a significant effort was spent in understanding the code before being able to
make meaningful modifications. However, the knowledge about the most useful detectors
and types of data can be applied in the design and implementation of future systems which
include the internal sensors and embedded detectors needed for covering the most common

intrusions and attacks. The effort and time needed to implement sensors and detectors could

This is the only case in which we use lines of code as a metric because of the limitations of the Metre
tool [85], which made it difficult to measure ESAM for the whole kernel.

81

be significantly smaller if they were implemented by the original authors of the programs,

possibly aided by component libraries or automated tools, as mentioned in Section 6.3.

82

5. TESTING THE ESP IMPLEMENTATION

After the initial ESP implementation was completed, a series of tests was performed to
measure its responses and to obtain qualitative and quantitative results about its behavior.
The tests were designed to evaluate the performance impact of the ESP intrusion detection

system on an instrumented host and its detection abilities for previously unknown attacks.

5.1 Performance testing
5.1.1 Testdesign and methodology

The purpose of the performance tests was to determine the impact that the ESP sensors
and detectors have on the instrumented host, under severe but non-intrusive operating con-
ditions (the detectors were not triggered during these tests). For this purpose, we decided

to focus on two groups of detectors:
1. Detectors in the networking portions of the kernel (24 detectors).
2. Detectors in a web servers (32 detectors).

These are the two largest groups of detectors (see Figure 4.3) and are good representatives
of detectors in the kernel and in a user space application respectively. The detectors are
additional code to be executed. Because they do not interfere with their surrounding code,
their main impact is in terms of additional execution time. We measured CPU utilization
and compared systems compiled with and without the detectors.

The general setup for the tests was as shown in Figure 5.1: One server B, that would
be the one instrumented with the detectors when appropriate, and where the CPU utiliza-
tion would be measured; and a client A, from which the tests would be launched against
B. These two machines were on a dedicated point-to-point network connected with a third
machine R operating as a transparent bridge between A and B. The purpose of R was to

allow the artificial reduction of the bandwidth available for the connection between A and

83

Figure 5.1. General setup for the performance tests of the ESP implementation. Host B is
the server, host A is the client, and R represents a host acting as a transparent bridge
between A and B. The three hosts are on dedicated point-to-point connections over
100Mbit/s full-duplex Ethernet.

B. Hosts A and B were 600 MHz Intel Pentium Il machines with 128 MB RAM running
OpenBSD 2.7, and host R was a 700MHz Intel Celeron machine with 128 MB RAM run-
ning FreeBSD [50] andummy_net[120] for imposing constraints on the bandwidth. Un-
necessary programs and services were stopped on the test machines (includysicine
andcron daemons, and the X Windows system) to reduce the factors that could confound

the performance measurements.

The first test was done using a subset of the NetPerf [62] benchmark. The NetPerf test
we used measures network performance as the maximum throughput between two hosts
by sending a stream of data from a source to a sink over a TCP or UDP connection. We
selected the TCP version of the test because 16 of the 24 detectors implemented in the
networking sections are in the IP or TCP layers. In this test, the independent variable
was the maximum bandwidth allowed between the source (A) and the sink (B) and was
controlled by setting bandwidth constraints on R usitugnmy_net. We measured CPU
utilization on B under increasing bandwidth, from 5 Mbps up to 100 Mbps.

In the second test, a web server was running on host B while host A was generating
requests. The web server used was Apache [5] as included in the OpenBSD 2.7 distribution.
We usedhttp _load [1] to generate the requests by randomly choosing URLs from a list.

The independent variable in this test was the number of simultaneous connections that

84

Table 5.1
Summary of the parameters for the performance tests. Both tests were repeated for the
ESP and NOESP cases. L represents the length of each test repetition, and S the number
of samples of the CPU load taken during each repetition.

Test name Indep. variable (X) Rangeof X L(sec) S
NetPerf Bandwidth 5 — 100 Mbps 60 54
httpload Parallel HTTP connectionss — 100 60 54

http _load was allowed to establish. We measured CPU utilization on host B under an
increasing number of simultaneous connections, from 5 up to 100.

For each value of the independent variable, twenty runs of the test were performed.
All the runs were duplicated in two blocks: one for host B with detectors (ESP block)
and one without detectors (NOESP block). Each run lasted for 60 seconds and during that
period, snapshot observations of the CPU load in host B were taken each second. The CPU
load was obtained using thep [83] command, which uses information gathered in the
statclock() function within the kernel context switch [87, p. 58]. Three observations
at the beginning and the end of each run were ignored (to eliminate ramp-up and ramp-
down measurements), and the rest (54 observations) were averaged to obtain an average
CPU load for each run.

All the information for each test is summarized in Table 5.1. The order in which the
independent variable was modified for the NetPerf and loiijol tests was generated using

a pseudo-random number generator with a fixed seed to be able to reproduce the sequence.

Before each block all the systems were rebooted and a “warm-up” sequence was run
by applying all the values of the independent variable in increasing order. This was done to
bring the hosts to a stable state in terms of caching, disk spinning and any possible unknown
factors, before taking any measurements.

Although we attempted to arrange the experimental setup to minimize extraneous ef-
fects on the measurements, there are still factors that could affect them, including virtual

memory, process scheduling and caching. The measurement process itself runs on the

85

22 T T T T T T T T T
20 8
e g
18 e 8 8 B g
- g 3
g g g g g o
16 | 8 é -4 9 8 © -
14 | é s * ¥ ‘i
s o g * ¥ 7
S - » g %
= 12+ S g ETEOEN .
B OE X X 8 * AN g
2 , g x ¥ 00X
2 10 gy % * i
5 R x
*
6 -
4 - B b
g NOESP x
2 r l NOESP average ------- -
= ESP o©
ESP average -
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

X (Bandwidth in Mbps)

Figure 5.2. Plot of the CPU utilization measurements from the NetPerf experiment,
showing the mean values for the ESP and NOESP cases.

CPU being measured, which may affect the observations as well. Finally, as mentioned,
the results reported consist of an average of averages, which may compound errors in the

measurements.

However, the purpose of these experiments was to compare the behavior of hosts with
and without detectors, and not to establish absolute measurements of performance. As
such, this setup and methodology is adequate for showing the impact that embedded detec-

tors have on the host in which they reside.
5.1.2 Results of the NetPerf test

Figure 5.2 shows the CPU measurements obtained in host B during the execution of
the NetPerf experiment. There are 20 points at each valué fofr each block (ESP and
NOESP) and the lines connect the mean values at each val¥e /e can see in this

graph that for lower values of, the CPU utilization is essentially the same, but the dif-

86

Table 5.2
Statistics and analysis results for data from the NetPerf experiment.
Mean CPU % Difference

X NOESP ESP Diff. 95% C.I. p-value
5 1.8296 1.7878 —0.0418 —0.4775-0.3939 0.8507
10 3.2396 3.0246 —0.2150 —0.6507-0.2207 0.3330
15 4.3484 4.5107 0.1624 —0.2734-0.5981 0.4647
20 5.5018 5.9936 0.4918 0.0560-0.9275 0.0270
25 5.9651 7.3771 1.4120 0.9762—1.8477 < 0.0001
30 6.8102 8.4731 1.6629 1.2272-2.0987 < 0.0001
35 7.6407 9.0994 1.4588 1.0231-1.8945 < 0.0001
40 8.3942 10.9556 2.5613 2.1256—2.9970 < 0.0001
45 9.0185 11.7683 2.7498 2.3141-3.1856 < 0.0001
50 9.3859 13.0943 3.7084 3.2727—4.1441 < 0.0001
55 10.2375 14.5434 4.3059 3.8701—4.7416 < 0.0001
60 11.1171 15.4268 4.3097 3.8740—4.7455 < 0.0001
65 11.1625 16.0658 4.9032 4.4675-5.3389 < 0.0001
70 11.9442 17.0314 5.0873 4.6515-5.5230 < 0.0001
75 12.2195 17.2707 5.0511 4.6154-5.4869 < 0.0001
80 12.3222 17.1559 4.8337 4.3979-5.2694 < 0.0001
85 10.8815 17.5441 6.6625 6.2268—7.0983 < 0.0001
90 11.6744 17.8184 6.1440 5.7082—6.5797 < 0.0001
95 12.2040 18.4758 6.2718 5.8361-6.7075 < 0.0001
100 13.8461 18.8180 4.9719 4.5361-5.4076 < 0.0001

ference grows larger a¥ increases, because the detectors in the networking layers of the
kernel introduce additional work that needs to be done for every packet that is received. To
guantify the difference, a pair-wise F-test was done for each valig ahd its results are
shown in Table 5.2. The p-values in this table show that the difference in means between
ESP and NOESP can be considered statistically non-significant up to &beut0, but

after that point it is statistically significant. Figure 5.3 shows the difference between the

means at each point, with its 95% confidence interval.

The results of this experiment are what would be expected, with the detectors having
a larger impact as the amount of work that the system does increases. The detectors can

have a considerable impact on the CPU load of the host, particularly for high values of

87

' ESP-NOESP

Means difference (CPU %)
N
T
——

1 1 1 1 1 1
0 20 40 60 80 100

X (Bandwidth in Mbps)

Figure 5.3. Difference in mean CPU utilization between the system with (ESP) and
without (NOESP) detectors in the NetPerf experiment, with the 95% confidence interval
for the difference at each point.

88

X. However, we should keep in mind that this test was specifically designed to stress
the host by maintaining a constant stream of the appropriate bandwidth fed to it. Under
normal operating conditions, the average network load being processed by a host is lower;
therefore the impact of the detectors should not be as noticeable. Furthermore, although
the difference istatisticallysignificant, it is never more than 7% of CPU utilization, which

in practical terms could be considered acceptable. At its maximum valu&(fer 85),

the difference in means is 6.6%. The NetPerf test is exercising a maximum of 24 detectors
(those implemented in the networking layers of the kernel), so on average each detector
adds less than 0.3% to the CPU load of the system. In reality, not all detectors have the
same impact (because of their functionality, implementation, and where they are placed),

but this number is an indication of the small impact that each individual detector has.
5.1.3 Results of the httpload test

The CPU measurements obtained in host B during the execution of thivatigxper-
iment are shown in Figure 5.4, with the mean values plotted as lines. The results from a
pair-wise F-test are shown in Table 5.3, and Figure 5.5 shows the difference between the

means with their 95% confidence interval.

In this case, the results are indicative of the detectors having a large impact on the CPU
utilization of the host. Counter intuitively, we can see that the CPU utilization on the system
with the detectors decreases’asncreases. This can possibly be attributed to caching ef-
fects (as the load increases, there is a larger chance that simultaneous or sequential requests

will be for the same URL), but it should be the subject of further study.
5.1.4 Comparison and comments about the tests

The results of the NetPerf experiment are not surprising and show that the impact of the
detectors increases as the network load increases. The impact of the detectors on the host
could potentially be reduced by improving the implementation of some of the detectors,
particularly the ESP-PORTSCAN detector. It keeps considerable state and maintains some
complex data structures, so it is likely to be one of the major contributors to the impact that

the detectors have.

89

18

' NOESP

o o NOESP average -------
g8 g o ESP o
16 g o e © ESP average -~ E
E’- -9 e
S o) o (o]
14 b g .g.. 8 ° o i
8 ° °© o 3 ° o
g g g © ° o)
o ¢ % e 8 §
12 : g g
< o © E L -
~ ° 2% 2§ %oy
8 10 9 e
- (o)
)
o
(®) *
8 % .
* ¥ X
°f = *) " § ¥ X % $
* * % x * % % % % //% - § 3
4t * B I - H £ . X i
R TREE
¥ " x x 2 *
2 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

X (number of simultaneous HTTP requests)

Figure 5.4. Plot of the CPU utilization measurements from the lotd experiment,
showing the mean values for the ESP and NOESP cases.

Table 5.3
Statistics and analysis results for data from the_hifgul experiment.
Mean CPU % Difference

X NOESP ESP Diff. 95% C.I. p-value
5 3.6933 15.4078 11.7145 11.2280-12.2011 < 0.0001
10 3.5093 15.0285 11.5191 11.0326—-12.0057 < 0.0001
15 3.6630 14.6531 10.9901 10.5036-11.4766 < 0.0001
20 3.6128 14.0115 10.3987 9.9121-10.8852 < 0.0001
25 3.5372 14.2591 10.7220 10.2354-11.2085 < 0.0001
30 3.5509 13.7199 10.1691 9.6825—10.6556 < 0.0001
35 3.7131 13.5013 9.7882 9.3017-10.2747 < 0.0001
40 3.8526 13.1243 9.2718 8.7852— 9.7583 < 0.0001
45 3.8177 12.9858 9.1680 8.6815— 9.6546 < 0.0001
50 3.8070 12.6226 8.8156 8.3290- 9.3021 < 0.0001
55 4.1388 12.6228 8.4840 7.9975— 8.9706 < 0.0001
60 4.1258 12.1468 8.0210 7.5345— 8.5076 < 0.0001
65 4.3988 12.1588 7.7600 7.2735— 8.2465 < 0.0001
70 4.6428 11.7982 7.1554 6.6688— 7.6419 < 0.0001
75 4.9663 11.5338 6.5675 6.0809— 7.0540 < 0.0001
80 5.1974 11.6255 6.4280 5.9415- 6.9146 < 0.0001
85 57775 11.4404 5.6628 5.1763— 6.1494 < 0.0001
90 6.1601 11.1788 5.0187 4.5321— 5.5052 < 0.0001
95 6.2901 11.0235 4.7334 4.2468— 5.2199 < 0.0001
100 6.4134 10.6010 4.1876 3.7011- 4.6742 < 0.0001

90

91

13 T T T

B J[ESP-NOESP —+— |
I |

Means difference (CPU %)
[ee]
T
——
—

3 1 1 1 1 1
0 20 40 60 80 100

X (number of simultaneous HTTP requests)

Figure 5.5. Difference in mean CPU utilization between the system with (ESP) and
without (NOESP) detectors in the httpad experiment. Also shown is the 95%
confidence interval for the difference at each point.

92

Overall, the NetPerf results can be seen as indicative of detectors that were designed
and implemented with moderate success: their impact is proportional to the amount of

activity in the host, and their impact is not excessive.

The httpload results are visibly different from the NetPerf results. Initially there is an
extremely large difference between the ESP and NOESP cases (over 308%-f6), but
this difference decreases Asincreases to the point where it is 65%.at= 100. While

still being a considerable difference, the reduction from the initial value is dramatic.

The reduction in difference could be explained by a number of factors, including caching
effects on the web server. The hitgad makes requests from a fixed-size list of URLs, and
as the number of simultaneous requests increases, the likelihood of requesting the same
URL several times simultaneously or in close sequence increases. If the web server is do-
ing any caching of requests (so that it can serve the same request multiple times without
having to do all the processing repeatedly), it could account for the reduction in CPU load

for larger values ofX .

More interesting for our purposes is the large effect that the detectors have on the CPU
load. This can be explained by the types of detectors involved. The largest detector in the
HTTP server is ESP-BADURLS, a generic detector that does not directly cover any other
detectors, but that provides mechanisms for implementing several others (see Figure 4.11).
These mechanisms consist mainly of a string-matching capability for detecting different
web-based attacks. What ESP-BADURLS does for every HTTP request is to sequentially
compare it against several strings using different qualifications (such as anchoring the test
string in different parts of the request, checking the arguments of the URL, etc.). In this
respect, ESP-BADURLS is different from all the other detectors (which check for a fixed
condition) and could be expectadoriori to have a larger impact on CPU utilization. Fur-
thermore, the initial implementation of ESP-BADURLS (used in these tests) uses a naive
approach, sequentially and blindly comparing the strings against each request. By improv-
ing the implementation to use an efficient regular expressions engine [e.g. 57, 67] or some
other string-matching mechanism, it may be possible to reduce the impact of the HTTP

detectors considerably.

93

In conclusion, these tests point out a major consideration for the use of internal sensors:
they are heavily dependent on implementation decisions, and a different implementation
might make a significant difference in performance and impact. Moreover, extreme care
must be taken in their implementation because when not implemented carefully, they can
have a severe impact on the performance of the monitored component. These tests are
not intended to provide measurements of the performance costs of embedded detectors in
general, but only of our implementation, and to show the feasibility of doing low-overhead
intrusion detection using the ESP architecture.

This consideration is one of the reasons why internal sensors had not been extensively
studied before. Their implementation is complex, and the possible consequences are severe.
However, as will be described in the next section, the payoff in detection capabilities can
be significant, and worth the work necessary to implement the sensors and make them

efficient.

5.2 Detection testing

The purpose of the detection test was to determine the validity of the second hypothesis
(see Section 1.4): by using internal sensors itis possible to detect new attacks. Additionally,
we wanted to get an idea of the effort needed to improve the detection capabilities of the
detectors when necessary. To this end, a number of previously unknown attacks were tested
against a host instrumented with ESP detectors.

5.2.1 Testdesign and methodology

As a source of information, we monitored the BugTraq mailing list [13] for a period
of slightly over one month, from May 3, 2001 to June 8, 2001. During this period, 157
messages to the mailing list were examined corresponding to reports of new vulnerabilities,
attacks and exploits against different systems. Of these messages, 80 were determined to
be applicable using the criteria defined in Section 4.7. Additionally, only messages that
described specific attacks (and not only generic or vague vulnerabilities) were selected as
applicable.

The 80 applicable attacks were tested against a host instrumented with the ESP imple-

mentation. We performed two types of testing depending on the attack:

94

Real testing: When an attack could be directly attempted against the OpenBSD system

running ESP, we did so and recorded any responses from the existing detectors.

For example, one of the attacks tested was againstrir@ab [141] program. Be-
cause this program exists in OpenBSD, the exploit script could be run directly in our

test system to determine whether the detectors would react to it.

Simulated testing: Sometimes an attack was not directly executable in our test platform—
for example, because it used a program that does not exist in OpenBSD, or because it
was specific to some other architecture. However, if the workings of the attack were
clear enough, we did a “simulated testing” of the attack by studying its properties
and determining whether any of the existing detectors would react to that attack if it

were attempted against a system instrumented with ESP.

For example, another one of the attacks examined was againstaaemin pro-

gram [125] in the Unixware operating system. The affected program does not exist
in OpenBSD, but the exploit was clear enough to show that it worked besaaad-

min followed a symbolic link in thetmp directory. By this reasoning, we could
determine that the attack would have been detected by the ESP-SYMLINK-OPEN

detector.

After testing, each attack was classified in one or more of the following categories (each

category has a letter code associated with it):

Detected (D): The attack was detected by one or more of the existing detectors. In this

case, we recorded the names of the detectors that reacted to the attack.

Detected if successful (DS)in some cases, the attack itself was not detected, but its ef-
fects would be if the attack were to be successful. In these cases, we also recorded

which detectors would be triggered by the successful attack.

For example, the attack agairsbn mentioned before was not immediately detected
by any of the existing detectors. However, on success the attack would have cre-

ated a root-owned set-UID copy of a shell, and this action would trigger the ESP-

95

BADMODE-ROOT-FILE detector, so we classify this attack as “detected if success-

ful”

Detectable with modifications to existing detectors (DM):Some attacks were not
detected by any of the existing detectors, but a reasonably small change to one of
them would be sufficient to make the attack be detected. We considered as “reason-
ably small” changes that involved tuning some parameter of the detector, or slightly
extending their functionality. In this case, we recorded the detector to which the

changes would have to be made, and what those changes would be.

For example, one of the entries reviewed was a web-based attack that used a “dot-dot”
(../) path to access files outside the normal web document directories, but with the
variation that parts of the string were encoded in their hexadecimal representations to
bypass checks at the web server (for example, could be encoded a%2e%?2f,

where 0x2E and Ox2F are the ASCII codes for a dot and a slash respectively). This
attack was not immediately detected by the existing ESP-URI-DOTDOT detector,
but a small addition to make it “unescape” the strings before checking them would

enable it to detect the attack.

Detectable with creation of new detectors (DC):Some attacks were not detected by the
existing detectors, but they could be by creating a new one. When the new detector
would be a generic one—so that it would be able to detect multiple attacks and not
only the one under testing—we considered this change as acceptable, because it pro-
vides for detection possibilities beyond the attack that prompted its creation. In this
case, we recorded the type of detector to create, its conditions for triggering, and a

proposed name for it.

For example, one of the attacks tested was a web-based buffer overflow, but using a
long string in one of the HTTP headers included in a request (instead of being a long
URL), so the existing ESP-LONGURL detector did not react to it. However, by im-
plementing a similar detector called ESP-HTTP-HDR-OVERFLOW, which performs

96

length checks on HTTP request headers, this attack (and possibly others) could be

detected.

Detectable if successful with modifications to existing detectors (SM):
This is similar to the DM category, but for the case in which the modifications to an

existing detector would cause the attack to be detected only if successful.

This is a possible category, but during the test no attacks were assigned to it.

Detectable if successful with creation of new detectors (SC)This is similar to the DC
category, but for the case in which a new generic detector could be created to detect

a successful attack.

Only one entry was found in this category during the testing. It led to the creation of
the ESP-PRIV-ESCALATION detector, which has the potential to detect many buffer

overflow and race condition attacks in which a process acquires elevated privileges.

Not detectable (ND): An attack was considered in this category when the only way to
detect it would have been to create a new specific detector for it. Creating a specific
detector does not provide any future benefits (possibility for detection of other attacks
other than the current one), so it was not considered as an acceptable change for our

purposes.

For example, one entry reviewed consisted of an attack againdist(® font server)

in certain versions of XFree86, which would crash when fed a long random string,
causing a denial-of-service attack. For detecting this attack, it would be necessary to
implement a new specific detector in this code. Therefore we consider it as not

detectable.

An entry can belong to any of these categories and can also belong to both DS and DC
(DSDC) or DS and DM (DSDM). This occurs when an attack is detectable if successful

but it could also be detected by either creating or modifying a detector.

97

Table 5.4
Number of attacks in each category for the four batches examined during the detection
tests. The “Total” column shows the counts for the whole test. The TD and TDM
categories represent the sum of the other fields in each section, and correspond to “Total
number of attacks detected” and “Total number of attacks detectable with changes”

respectively.
Batches
Category #1 #2 #3 #4 Total
Non-applicable 20 17 22 18 77
Applicable 20 20 20 20 80
D 6 9 8 9 32
DS 1 3 0 2 6
TD (D+DS) 7 12 8 11 38
DM 6 4 3 O 13
DC 3 2 3 O 8
SC O 1 0 O 1
TDM (DM+DC+SC) 9 7 6 O 22
DSDC 1 2 0 O 3
ND 5 3 6 9 23

The testing was divided in four batches of 20 attacks. After every batch, all the changes
recorded for detectors in categories DM, DC and SC were applied, so after each batch all

the entries in those categories would belong to category D.

5.2.2 Results from the detection test

In total, 157 attacks were examined, of which 80 were applicable. Of these, 47 were
done with real testing, and 33 with simulated testing.

The number of attacks in each category for each one of the batches and for the whole
test are shown in Table 5.4. The total categories (TD, TDM and ND) are displayed also
in Figure 5.6. In this chart, we can see that the number of attacks detected was consistently
over 30% in each of the batches. When counting the attacks that were detected after making

modifications to the detectors, the number was consistently over 50%.

98

20
3
18 -
2 6
16 9
14 -
0 121 - OND
8 10 ETDM
< ETD
i 7 8
1 2 3 4

Batch

Figure 5.6. Total of attacks marked as “detected”, “detected with modifications” and “not
detected” for each one of the batches of the detection test.

Keeping in mind that each batch incorporates the changes made after the previous batch,
it is also of interest to analyze the total results at the beginning and at the end. This is, if
all the 80 attacks had been applied to the original detectors, how many would have been
detected? By comparing this with the number of attacks detected at the end of the test
(after all the changes were made), we can observe the impact that the changes had in the
detection capabilities. Figure 5.7 shows these numbers graphically. We can see that even
without any modifications, the original ESP detectors would have been able to detect 35%
of the new attacks (41.2% if we count the ones in group DS). After making the changes,

the detection rate went up to 62.5% (71.2% with DS).

Original detection capabilities

Of the 80 attacks exercised during this test, 33 would have been detected by the ESP
detectors as originally implemented. Table 5.5 shows the distribution of the detectors in-
volved. Table 5.6 shows the distribution of the Krsul categories assigned to each attack (see

Appendix C).

99

60

" N
£ 40 |
S
& mDS
530 [oo
3 50
€ 20 |
=z

28
10
0
Original Final

Figure 5.7. Total number of attacks that would have been detected by the original
detectors, and by the detectors after the changes.

Table 5.5
Distribution of original ESP detectors that responded to the attacks in the detection test.
The percentages are with respect to the total number of attacks in the test (80).

Detector Attacks detected % of Total
ESP-SYMLINK-OPEN 13 16.25
ESP-BADMODE-ROOT-FILE 4 5.00
ESP-FTP-CMD-OVERFLOW 4 5.00
ESP-LONGURL 3 3.75
ESP-URI-DOTDOT 3 3.75
ESP-ARGS-LEN 2 2.50
ESP-ENV-LEN 1 1.25
ESP-FILE-INTEGRITY 1 1.25
ESP-PORTSCAN 1 1.25
ESP-SNMP-EMPTY-PACKET 1 1.25
ESP-TMP-SYMLINK 1 1.25

100

Table 5.6
Distribution of categories in the Krsul classification for the attacks to which the original
ESP detectors responded. See Appendix C for the definitions of each category. The
percentages are with respect to the total number of attacks in the test (80).

Category Attacks detected % of Total

2-12-2-1 14 17.50
2-2-1-1 6 7.50
2-12-2-2 3 3.75
3 3 3.75
2-2-1-4 1 1.25
2-3-2-1 1 1.25
2-4-1-1 1 1.25
2-5-1-1 1 1.25
2-7-1-4 1 1.25
2-8-1-1 1 1.25
2-10-2-1 1 1.25

Looking at these tables it is possible to see some relationships. For example, the most
successful detector is ESP-SYMLINK-OPEN, which triggers when a symbolic link is ac-
cessed in a temporary directory. Coupled with the high occurrence of attacks in category
2-12-2-1 (which refers to programs assuming that a file path refers to a valid temporary
file), it is an indicator of the high occurrence of the so-called “bad symlink” attacks, in
which a program can be tricked into following a symbolic link placed by the attacker to
modify or read system files.

Also of interest is the high occurrence of attacks in category 2-2-1-1 (programs as-
suming that user input is at most of a certain length) that corresponds in general to buffer
overflow attacks. These attacks are detected mainly by the ESP-ARGS-LEN, ESP-ENV-
LEN, ESP-LONGURL and ESP-FTP-CMD-OVERFLOW detectors.

We implemented detectors for 130 out of 815 entries in the CVE database (see Sec-
tions 4.3 and 4.13), corresponding to 15.9% of the entries, both applicable and non-ap-
plicable. Those detectors were able to detect 38 of the total 157 entries (both applicable
and non-applicable) examined in the detection test, corresponding to a 24.2% detection

rate. These numbers are encouraging because we can expect that by implementing detec-

101

tors for more CVE entries, a larger number of generic detectors could be designed and

implemented, providing even larger detection capabilities for new attacks.
Effects of changes on detection capabilities

The changes done to the detectors during this test are listed in Table 5.7 according to
the detector they affected. In total, 65 executable statements were added or modified in
these changes, and the changes caused an increase of 30% in the detection capabilities of
the detectors.

Tables 5.8 and 5.9 list the distribution of detectors and Krsul classifications for the
detection capabilities of the final detectors (after the modifications).

Figure 5.8 shows the percentage of attacks in each Krsul category that occurred in the
test, and the percentage of those attacks that were detected by the original and the final
detectors. Also, to make it easier to see the differences between the original and final
detection capabilities by type of vulnerability, Figure 5.9 shows the percentage of attacks
detected by the original and final detectors, plotted ascoordinates. In this plot, those
points farther above the identity line represent the categories with the most improvement
as a result of the changes.

One notable change is the increase in the detection of attacks from categories 2-12-2-2
and 2-11-1-1 (both of which correspond to programs assuming that a path name given by
the user is in valid space for the application). This can be attributed to the improvements to
the ESP-URI-DOTDOT detector, as well as the creation of ESP-FTP-CMD-DOTDOT.

We can also see that there was a 100% detection rate for category 2-12-2-1 (correspond-
ing to “bad symlink” attacks), which shows the effectiveness of the corresponding detector
(ESP-SYMLINK-OPEN).

In a similar fashion, Figure 5.10 shows the percentage of attacks detected by each detec-
tor before and after the changes, and Figure 5.11 plots the “before” and “after” percentages
asz,y coordinates. We can see that ESP-URI-DOTDOT was the detector with the largest
improvement. This is mostly the result of the changes in the way encoded characters are
examined and to the large occurrence of attacks of type 2-12-2-2 and 2-11-1-1 (which this

detector corresponds to). We can also see a considerable improvement in ESP-BADURLS

102

Table 5.7

Changes made during the detection test of the ESP implementation. Also listed is the
ESAM count for each change. Note that the ESP-SNMP-EMPTY-PACKET detector has
an ESAM count of zero because no changes were made to the code, it simply was
renamed. Detectors marked with a “*” were created as part of the changes.

Detector

Description ESAM

ESP-URI-DOTDOT

ESP-ARGS-LEN

ESP-ENV-LEN

ESP-BADURLS

ESP-BADURLS

*ESP-HTTP-HDR-OVERFLOW

*ESP-FAILED-ROOT-CHOWN

*ESP-PRIV-ESCALATION

*ESP-FTP-CMD-DOTDOT

*ESP-SNMP-EMPTY-PACKET

Make it check the whole HTTP request and 2
not only the URI part. Also make it look for
DOS-style directory separatory {n addition

to Unix-style (/).

Reduce threshold. 1
Reduce threshold. 1
Add five new strings for detecting attacks. 5
Make it unescape the string before process-41
ing it. If any escaped characters remain after
the first pass, unescape again, to catch both
single- and double-encoded malicious char-
acters.

Created. Triggers when the length of a header 7
in an HTTP request exceeds a certain thresh-
old or contains NOP characters.

Created. Triggers when a failed attempt to 2
change the ownership of a file toot occurs.
Created. Triggers when “escalation of priv- 2
ilege” occurs, defined as the execution of a
non-set-UID program by eoot set-UID pro-
gram that has not dropped its privileges.
Created. Triggers when a command sent to 4
the FTP server uses.”” or “... " (valid

in Windows) in a way that would attempt to
access files outside the directory tree of the
FTP server.

Renamed. This detector already existed as 0
CVE-2000-0221, but during the test it was
seen that it is able to detect multiple attacks,
So it was renamed as a generic detector.

103

Table 5.8
Distribution of ESP detectors that responded to attacks after the changes made during the
detection test. The percentages are with respect to the total number of attacks in the test

(80).

Detector Attacks detected % of Total
ESP-SYMLINK-OPEN 13 16.25
ESP-URI-DOTDOT 9 11.25
ESP-BADURLS 6 7.50
ESP-FTP-CMD-DOTDOT 5 6.25
ESP-ARGS-LEN 4 5.00
ESP-BADMODE-ROOT-FILE 4 5.00
ESP-FTP-CMD-OVERFLOW 4 5.00
ESP-ENV-LEN 3 3.75
ESP-FAILED-ROOT-CHOWN 3 3.75
ESP-LONGURL 3 3.75
ESP-PRIV-ESCALATION 2 2.50
ESP-FILE-INTEGRITY 1 1.25
ESP-HTTP-HDR-OVERFLOW 1 1.25
ESP-PORTSCAN 1 1.25
ESP-SNMP-EMPTY-PACKET 1 1.25
ESP-TMP-SYMLINK 1 1.25

104

Table 5.9
Distribution of categories in the Krsul classification for the attacks detected after the
changes. See Appendix C for the definitions of each category. The percentages are with
respect to the total number of attacks in the test (80).

Category Attacks detected % of Total

2-12-2-1 14 17.50
2-12-2-2 12 15.00
2-2-1-1 7 8.75
3 6 7.50
2-11-1-1) 6.25
2-3-2-1 3 3.75
2-5-1-1 3 3.75
2-2-1-3 2 2.50
2-2-1-4 2 2.50
2-1-3-1 1 1.25
2-4-1-1 1 1.25
2-7-1-4 1 1.25
2-8-1-1 1 1.25
2-10-2-1 1 1.25

105

l Total in test
OTD original
OTD final

Category
n
DN
e
SN

o
[N
>
>
[REN

0 5 10 15 20

Percentage in detection test

Figure 5.8. Distribution of attacks in the detection test by Krsul categories. The “Total in
test” bars represent the percentage of all the applicable attacks in the detection test (80)
that belong to each category. The “TD original” bars represents the percentage of attacks
that were detected by the original detectors, and the “TD final” bars represent the
percentage that were detected by the final detectors.

106

18 T T T T T T T T ; PPN
)
@ 16 |
8 21222
g ¥
o
3 14f |
®
o
o i —
g 12
2
3]
°
% 10 |

22-11

B ;
8 gl . |
2 b
S 211-1-1
9]
 6F * |
©
4]
g 4l |
E +
c 22-13 22-1-4
' + +
@
S 21 2131 |
o + A
5
g 0r |
o

-2 : ! I I ! . | Identity -~

0 2 4 6 8 10 12 14 16 18

Occurrence in attacks detected by original ESP detectors

Figure 5.9. Percentages of attacks detected (by Krsul category) by the original and final
detectors, plotted as y coordinates. Unlabeled points correspond to multiple categories
with the same coordinates. Points farther above the identity line represent categories that

saw the largest increases in detection as a result of the changes.

ESP-URI-DOTDOT

ESP-TMP-SYMLINK

ESP-SYMLINK-OPEN

ESP-SNMP-EMPTY-PACKET

ESP-PRIV-ESCALATION

ESP-PORTSCAN

ESP-LONGURL

ESP-HTTP-HDR-OVERFLOW

ESP-FTP-CMD-OVERFLOW

Detector

ESP-FTP-CMD-DOTDOT

ESP-FILE-INTEGRITY

ESP-FAILED-ROOT-CHOWN

ESP-ENV-LEN

ESP-BADURLS

ESP-BADMODE-ROOT-FILE

ESP-ARGS-LEN

107

O TD original
B TD final

5 10 15 20

Percentage of attacks detected

Figure 5.10. Percentage of attacks detected by each detector, before (TD original) and
after (TD final) the changes made during the detection test. The percentages are expressed
with respect to the total number of applicable attacks in the test (80).

108

=
[oe]

ESP-SYMLINK-OPEN
A4

=

(o2}
T

1

[N
N
T

1

=

N
T

1

ESP-URI-DOTDOT
+

=

o
T

1

—ESP-BADURLS
+

ESP-FTP-CMD-DOTDOT P
+ -~

Attacks detected after changes (%)
oo

6r Eyrrpcmngvzéﬁow
+ A
- FAILED-ROOT-CHOWN o
T . 1
ESP-PRIV-ESCALATION .
+ -
2 r ESP-FILE-INTESRITY T
+ A
0+ .
2 1 1 1 1 1 1 1 ldent|t¥ 7777777
0 2 4 6 8 10 12 14 16 18

Attacks detected in original form (%)

Figure 5.11. Percentage of attacks detected by each detector before and after the changes
made during the detection test, plottedrag coordinates. Not all the points are labeled
because of space considerations. Points farther above the identity line represent the
detectors that saw the most improvement after the changes.

109

(because of the addition of new patterns), and of some of the generic detectors created as

part of the changes.
5.2.3 Comments about the detection test

To evaluate the similarity of the attacks used in the detection test to the types of attacks
for which the ESP detectors were implemented, we plotted each category using its occur-
rence in the ESP detectors and in the test set axoordinates, as shown in Figure 5.12.

We can see that most points are close to the identity line (shown for reference), indicating
that the two distributions are indeed similar. The Pearson correlatjdar(these points is
0.673, confirming the strong linear correlation. A linear regression of the points results in

the following formula:

y = 1.0512 + 0.0694,

which is close to the identity line, providing a third confirmation of the similarity between

the two distributions.

This similarity suggests the validity of using random drawing from the CVE as a guide
for the implementation of the ESP detectors, because it resulted in detectors for a popula-

tion of attacks similar to those encountered in “the real world.”

Particularly similar (close to the identity line) are categories 2-2-1-1, 2-5-1-1, 2-3-2-1
(all three of which correspond to buffer overflow attacks), 2-2-1-3 and 2-2-1-4 (correspond-
ing to programs failing to check the form of user-provided input). Others, such as 2-12-2-1
(mostly symlink-based attacks) and 2-12-2-2 (mostly “dot-dot” attacks) have a larger rep-
resentation in the test set than in the detectors implemented, but correspond to some of the

most effective generic detectors that were implemented (see Tables 5.5 and 5.8).

Assuming that the set of applicable attacks in the detection test is representative of
the new attacks that continuously appear in the real world, we can make some predictions
about the detection capabilities of the ESP detectors (this assumption should be evaluated

in future work by sampling sets of attacks that appeared during different periods of time).

110

20 T T T T T T T T
= 3) Identity
> + Linear regression
= 18 |- 2-12-2-1 =
4] +
5
*3 16 - —
o 2-11-2-2
3
2-2-1-1
o 14 Ty T
< .
=
S
9 12 - .
3]
g8
< L i
© 10
Qo
]
9
= 8 4
Q
® 2-11-1-1
5 T+
- 6 .
Q
n
2
= | 2-4-1-1 _
e 4 *
)
= ,
e 2 r 2714 1021 1]
Q + +
3]
o) 2:10-2-2-12-1-2 27-1-52-6-1-1 4
o OF - + o+ + o+ + -
’ 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Percentage in the original ESP detectors (%)

Figure 5.12. Comparison of the distribution of vulnerability types in the ESP detectors
and in the set of applicable attacks found during the detection test. Points close to the
identity line represent categories that have a similar representation in both distributions.
Points without labels correspond to multiple categories with the same percentage in both
distributions. Also plotted is the line corresponding to a linear regression of the points.
The Pearson correlation of these points is 0.637, indicating a strong linear correlation.

111

Table 5.10
Confidence intervals for the detection rates of ESP detectors, computed using the
percentages of detection before and after the changes made during the detection test. The
“original” and “final” designators refer to the ESP detectors as originally implemented (at
the start of the test) and after the modifications listed in Table 5.7, respectively.

Proportion measured 95% Conf.

Measure in test interval
D original 0.3500 0.2392-0.4608
TD original 0.4125 0.2984—0.5266
D final 0.6250 0.5127-0.7373
TD final 0.7125 0.6071-0.8179

As a first approach to these predictive capabilities, we can use the standard formula for

computing a 95% confidence interval on a proporfon

. . 1-— :
95% Confidence intervat p + | 1.96 u + 05)
N N
The 95% confidence intervals for the percentages of detection before and after the changes
made to the detectors are shown in Table 5.10. Further possibilities for prediction of detec-

tion capabilities are described in Section 6.3.

112

6. CONCLUSIONS, SUMMARY AND FUTURE WORK

6.1 Conclusions

Throughout their history, intrusion detection systems have been designed with different
algorithms and structures for detection. They started by being host-based [40], later evolved
into network-based systems [e.g. 60], and in the later years they have tended towards a dis-
tributed combination of the two [e.g. 112]. However, during all that evolution, the sources
of information used by intrusion detection systems have remained essentially unchanged:
audit trails and network traffic. A few notable exceptions have used other sources of infor-
mation [e.g. 65, 76], but even those were designed with specific applications in mind and
using only a limited set of data.

The data sources used by most intrusion detection systems to date have one main lim-
itation: they reflect the behavior of the system being monitored, but are separate from it.
Because of this, we consider them as indirect data sources. These data sources have limita-
tions in the timeliness, completeness and accuracy of the data that they provide. They make
the intrusion detection system vulnerable to attacks on several fronts, including reliability
and denial-of-service. Even when direct data sources have been used by some intrusion
detection systems [e.g. 137], the sensors used to collect the information have been external
to the objects being monitored; therefore still subject to multiple forms of attack.

The problems and limitations that have been encountered in intrusion detection systems
have indicated that the best place to collect data about the behavior of a program or system
is at the point where the data is generated or used.

In this dissertation, we have proposed an architecture based on using internal sensors
built into the code of the programs that are monitored and are able to extract information
from the places in which it is generated or used. Furthermore, by expanding those internal
sensors with decision-making logic, we showed an application of embedded detectors to

build an intrusion detection system. If necessary, this intrusion detection system can op-

113

erate without any external components (components that are separate from the ones being

monitored), other than those necessary to read the alerts produced.

To demonstrate the feasibility of this architecture and to learn more about its needs and
capabilities, we described a specific implementation in the OpenBSD operating system. In
its original form, this implementation detects 130 specific attacks, and through the experi-
ence acquired with those, 20 generic detectors were implemented that have the capability
of detecting previously unknown attacks, as demonstrated by the detection experiments

performed.

This dissertation provides an architectural and practical framework in which future
study of internal sensors and embedded detectors in intrusion detection can be based. Other
research projects are already using this framework for the study of novel techniques for both
host-based and distributed intrusion detection [43, 55], and considerable further study on

the use of internal sensors is possible.

Both Thesis Hypotheses (Section 1.4) were shown to be true. First, it is possible to
build an intrusion detection system using internal sensors while maintaining fidelity, reli-
ability, and reasonable resource usage; although in this last respect, we concluded that the
specifics are dependent on the implementation. Second, internal sensors can be used to de-
tect not only known attacks for which they are specifically designed, but also new attacks

by looking at generic indicators of malicious activity.

This dissertation also provides a classification of data source types for intrusion de-
tection systems, and a description of the characteristics and types of internal sensors and
embedded detectors. Furthermore, its implementation provides specific insight into the
types of data that are more useful in the detection of attacks using internal sensors, and
into places in a system where those sensors can best be placed to make them efficient and

reliable.

Although the implementation cost of the prototype described in this dissertation was
high, the advantages of having internal sensors available on a system are numerous. We

expect that our work will provide guidance and encouragement for their integration in fu-

114

ture systems since their design, which will lead to considerable reductions in their imple-

mentation cost and in their impact on performance and size.

In a sense, our approach differs little from the error-checking and careful programming

that should exist in any well-maintained system. But the use of code embedded into the

operating system and the programs not only for prevention of problems, but for generation

of data, is an important step in the development of intrusion detection systems that can

provide complete and accurate information about the behavior of a host. The collection

of data, even if it is about actions that do not constitute an immediate risk, may provide

information about other attacks against which hosts are not protected yet.

6.2

Summary of main contributions

Provided a classification of data sources for intrusion detection, and of the mecha-

nisms used for accessing them.

Described the properties of internal sensors in their use for intrusion detection, and
an architecture for building intrusion detection systems based on internal sensors and

specialized sensors namechbedded detectars

Implemented a prototype intrusion detection system using the architecture described,
showing that it is possible to use internal sensors to perform intrusion detection while

maintaining most of the desirable properties described in Section 1.2.2.

Showed that through the implementation of a “large enough” number of specific

detectors, it was possible to identify patterns and concepts to be used in generic
detectors, confirming the notion that attacks against computer systems tend to cluster
around certain vulnerabilities. Once these core problems are identified, it is possible

to build generic detectors for them.

Showed that the prototype implemented is able to detect previously unknown attacks

through the use of properly designed generic detectors.

6.3

115

Showed that it is possible to build a general-purpose intrusion detection system based
on obtaining the data needed for the detection, instead of relying on the data provided

by the operating system and the applications.

Showed that it is possible for an intrusion detection system built using internal sen-

sors to have acceptable impact on the host.

Showed that careless implementation can cause sensors to have a large impact on
the host. When using internal sensors, implementation issues are significantly more

important than when using traditional external detectors.

Collected information about the placement and types of data most frequently used
by detectors; data therefore most likely to be useful in the development of future

detectors and sensors.

Identified types of vulnerabilities most frequently encountered, both through the de-

velopment of the prototype and in the detection testing performed.

Showed that internal sensors and embedded detectors can add significant detection

capabilities to a system while increasing its size only by a small fraction.

By combining concepts from source code instrumentation and intrusion detection,
we showed that it is possible to build an intrusion detection system that can perform
intrusion detection at multiple levels (operating system, application, network) and in

multiple forms (signature-based, anomaly-based) to increase its coverage.

Future work

The work presented in this dissertation has explored the basic concepts of using internal

sensors for intrusion detection by showing their feasibility. However, there is a considerable

amount of work that needs to be done to further study and characterize their properties.

This dissertation focuses on the use of internal sensors in a single host. We consider

ESP as a distributed intrusion detection architecture because the sensors operate indepen-

dently in multiple components, but work is needed to show the feasibility and character-

istics of using internal sensors in an intrusion detection system that spans multiple hosts.

116

Some work is already underway [55] to study the mechanisms that could be used in such a
system in a way that prevents overloading of both communication channels and coordina-

tion components.

The performance tests showed that implementation decisions can severely affect the
performance impact of the sensors. In this respect, practical work is necessary to perform
optimization and reevaluation of the detectors. Further study is necessary to identify the
factors of a detector that result in the largest processing overhead, and in the best ways of

reducing those factors.

In terms of the detection capabilities of internal sensors and embedded detectors, the
results presented in Section 5.2 show that they have the possibility of detecting a significant
percentage of new attacks. Longer-term testing may help in fully understanding and possi-
bly modeling their capabilities and limitations. A formal characterization of the detectors
in relationship to the types of attacks encountered would provide firmer prediction capabil-
ities, and help ensure consistency and completeness of the data provided by the detectors.
A probabilistic model that links the “ease of detection” of each type of vulnerability with
the expected occurrence of each category in new attacks (as implied by the percentages of
detection and total occurrence of each category in Figure 5.8) could be useful in predict-
ing the detection capabilities of embedded detectors. Such a model could also be related
to the expected effect that improvements to the detectors have in the detection capabili-
ties (as shown in Figure 5.9) to determine cost-effective policies for sensor and detector

maintenance and upgrading.

We showed that by implementing detectors for a relatively small fraction of the entries
in the CVE database, we were able to implement generic detectors capable of detecting a
significant percentage of new attacks. Future work could explore improving the detection

rate for new attacks by implementing detectors for a larger number of CVE entries.

Once a host is instrumented with internal sensors, it might be possible to explore new
detection capabilities that would have been to expensive or complex to implement using
traditional intrusion detection systems. One such possibility is thatitfound intrusion

detection in which internal sensors could provide enough information to detect malicious

117

activity at its origin, so that the burden of intrusion detection can be placed not only on the
victims, but also on the potential attackers such as the hosts at Internet Service Providers.

Erlingsson and Schneider [47] described the useefd#frence monitorshat are auto-
matically generated. In this dissertation, the internal sensors and embedded detectors are
individually hand-coded. Using the information gained about the types of data that need to
be collected, it may be possible to explore the possibility of automatically generating those
sensors in a policy directed fashion. Another possibility would be the automatic generation
of components that could be used by programmers to insert sensors and detectors in their
code.

As a design decision, during this work we avoided using the embedded detectors to stop
an attack once its detected. However, this is a clear application for embedded detectors be-
cause of their localization and their ability to perform early detection. Automatic reaction
to intrusions has not been widely explored in practice because of the dangers it presents (a
false alarm can result in the interruption or modification of legitimate activity), but embed-
ded detectors would be an ideal mechanism for implementing it. The feasibility of this task
has been shown in the implementation of the pH system [135], which uses internal sensors
to perform both detection and reaction to attacks.

This dissertation has explored the feasibility of extracting information about the behav-
ior of a computer system that is more complete and reliable than any data that had been
available before to intrusion detection systems. This availability opens multiple possibil-
ities for future exploration and research, and may lead to the design and development of

more efficient, reliable and effective intrusion detection systems.

LIST OF REFERENCES

118

LIST OF REFERENCES

[1] ACME Labs. httpload. Website ahttp://www.acme.com/software/

http_load/ , 2001.

[2] Aleph One. Smashing the stack for fun and proRtrack Magazme7(49) 1996.

[3]

URL http://www.securityfocus.com/archive/1/5667

D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion-detection ex-
pert system (NIDES): A summary. SRI-CSL 95-07, SRI International, Menlo Park,
California, May 1995. URlhttp://www.sdl.sri.com/nides/reports/

4sri.pdf

[4] Anzen. Web page dittp://www.anzen.com/products/afj/ , June 2001.

[5] Apache Software Foundation. Apache server. Website at http://www.apache.org/,

[6]

[7]

2000.

Midori Asaka, Atsushi Taguchi, and Shigeki Goto. The implementation of IDA:
An intrusion detection agent system.Rrnoceedings of the 11th FIRST Conference
Brisbane, Australia, June 1999. URittp://www.ipa.go.jp/STC/IDA/
paper/first.ps.gz

Stefan Axelsson. Research in intrusion-detection systems: A survey. TR 98-17, De-
partment of Computer Engineering, Chalmers University of Technologiglédrg,
Sweden, December 1998. Revised August 19, 1999.

[8] Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isacoff, Eugene

[9]

[10]

[11]

Spafford, and Diego Zamboni. An architecture for intrusion detection using au-
tonomous agents. IRroceedings of the 14th Annual Computer Security Applica-
tions Conferencepages 13—-24. IEEE Computer Society, December 1998.

Bruce Barnett and Dai N. Vu. Vulnerability assessment and intrusion detection with
dynamic software agents. Froceedings of the Software Technology Conference
April 1997.

Michael Beck, Harold Bohme, Mirko Dzladzka, Ulrich Kunitz, Robert Magnus, and
Dirk Verworner. Linux Kernel Internals Addison-Wesley, Reading, Massachusetts,
1996.

Kirk A. Bradley, Steven Cheung, Nick Puketza, Biswanath Mukherjee, and
Ronald A. Olsson. Detecting disruptive routers: A distributed network monitoring
approach. IrProceedings of the 1998 IEEE Symposium on Security and Privacy
pages 115-124, Los Alamitos, California, May 1998. IEEE Press.

119

[12] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible markup
language (XML) 1.0. W3C recommendation, World Wide Web Consortium, October
2000. URLhttp://www.w3.0rg/TR/2000/REC-xmlI-20001006

[13] BugTrag. Mailing list archive. Web page http://www.securityfocus.
com/, 1999-2001.

[14] Adriano M. Cansian, Aleck Zander T. de Souza&r@o Leugi Filho, and Ed-
son S. Moreira. Um sistema de captura de pacotes para uso en seguranca de re-
des. Available ahttp://www.acme-ids.org/downloads/security/
papers/apresentacoes/acme2.pdf , 1999.

[15] Captus Networks. The CaptlO and CaptlO-G security solutions. Web patp:at
Ilwww.captusnetworks.com/ , June 2001.

[16] CERT Coordination Center. Denial-of-service attack via ping. CERT Advisory
CA-1996-26, Computer Emergency Response Team, December 1996httpRL
/Iwww.cert.org/advisories/CA-1996-26.html

[17] CERT Coordination Center. UDP port denial-of-service attack. CERT Advisory
CA-1996-01, Computer Emergency Response Team, February 1996 httfiRL
[Iwww.cert. org/adwsorles/CA 1996-01.html

[18] CERT Coordination Center. IP denial-of-service attacks. CERT Advisory CA-1997-
28, Computer Emergency Response Team, December 1998.htRLwww.
cert.org/advisories/CA-1997-28.html .

[19] CERT Coordination Center. Smurf IP denial-of-service attacks. CERT Advisory
CA-1998-01, Computer Emergency Response Team, January 1998.httiRL
[Iwww.cert. org/adV|sor|es/CA 1998-01.html

[20] CERT Coordination Center. CERT/CC statistics. URttp://www.cert.
org/stats/cert_stats.html , 2001.

[21] Steven Christey, Mann, and Hill. Development of a common vulnerability enumer-
ation. InProceedings of the 2nd International Workshop on Recent Advances in
Intrusion Detection (RAID99)West Lafayette, Indiana, September 1999. Online
proceedings, available http://www.raid-symposium.org/raid99/

[22] Gary G. Christoph, Kathleen A. Jackson, Michael C. Neuman, Christine L. B.
Siciliano, Dennis D. Simmonds, Cathy A. Stallings, and Joseph L. Thomp-
son. UNICORN: Misuse detection for UNICOS. In Proceedings of the 1995
ACM/IEEE Supercomputing Conferen@CM Press and IEEE Computer Society
Press, 1995. URIhttp://www.supercomp.org/sc95/proceedings/

714 _GGC/SC95.HTM.

[23] Cisco Secure Consulting. Vulnerability statistics report. Available on-
line at http://www.ieng.com/warp/public/778/security/vuln_
stats_02-03-00.html , 2001.

[24] Cisco Systems. Cisco PIX and CBAC fragmentation attack, September 1998. URL
http://www.cisco.com/warp/public/770/nifrag.shtml . Field
Notice.

120

[25] Cisco Systems. Cisco Secure Intrusion Detection. Web pab&pat/www.
cisco.com/warp/public/cc/pd/sqsw/sqidsz/index.shtml , June
2001.

[26] Computer Associates. eTrust audit. Web pagétih://www3.ca.com/
Solutions/Product.asp?ID=157 , June 2001.

[27] Computer Associates. eTrust intrusion detection. Web pagét@t/ wwwa3.
ca.com/Solutions/Product.asp?ID=163 , June 2001.

[28] Computer Incident Advisory Center. LLNL’s NID distribution site. Web page at
http://ciac.linl.gov/cstc/nid/ , June 2001.

[29] Computer Security Technology. The Kane security monitor. Web pabtpat
[lwww.cstl.com/html/info/idi/ksm.htm , June 2001.

[30] Bryan Costales and Eric Allmasendmail O'Reilly & Associates, Inc., 981 Chest-
nut Street, Newton, Massachusetts, second edition, 1997.

[31] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike Frantzen,
and Jamie Lokier. FormatGuard: Automatic protection from printf format string vul-
nerabilities. InProceedings of the 2001 USENIX Security SympasWashington,

DC, August 2001. URLhttp://immunix.org/formatguard.pdf . To be
published.

[32] Mark Crosbie, Bryn Dole, Todd Ellis, lvan Krsul, and Eugene Spafford. IDIOT—
users guide. CSD-TR 96-050, COAST Laboratory, Purdue University, 1398 Com-
puter Science Building, West Lafayette, Indiana, September 1996. M@L
/lIwww.cerias.purdue.edu/techreports/public/96-04.ps

[33] Mark Crosbie and Eugene Spafford. Defending a computer system using au-
tonomous agents. IAroceedings of the 18th National Information Systems Security
Conferencevolume Il, pages 549-558, October 1995. URtp://www.best.
com/"mcrosbie/Research/NISSC95.ps

[34] Mark Crosbie and Gene Spafford. Active defense of a computer system
using autonomous agents. Technical Report 95-008, COAST Group, De-
partment of Computer Sciences, Purdue University, West Lafayette, Indiana,
February 1995. URILhttp://www.cerias.purdue.edu/homes/spaf/
tech-reps/9508.ps

[35] Mark Crosbie and Gene Spafford. Applying genetic programming to intrusion detec-
tion. In Proceedings of the AAAI Fall Symposium on Genetic ProgrammiAdl,
1995. URL ftp://ftp.cerias.purdue. edu/pub/docllntrusmn
detection/mcrosbie-spaf-AAAl-paper.ps.Z

[36] Cylant. Cylantsecure. Web pagetdtp://www.cylant.com/ , June 2001.

[37] Thomas E. Daniels and Eugene H. Spafford. Identification of host audit data to
detect attacks on low-level IP vulnerabilitie3ournal of Computer Security’(1):
3-35, 1999.

[38] DataLynx. DataLynx products page. Web pagentip://www.dIxguard.
com/products.htm , June 2001.

121

[39] Henk Debar, Monique Becker, and Didier Siboni. Hyperview: An intelligent secu-
rity supervisor. InProceedings of the 2nd International Conference on Intelligence
in Networks Bordeaux, France, March 1992.

[40] Dorothy E. Denning. An Intrusion-Detection Modd#EEE Transactions on Software
Engineering 13(2):222—-232, February 1987.

[41] Digital Equipment Corporation. POLYCENTER security intrusion detector for
SunQOSs, version 1.0. Online description tdtp://www.geek-girl.com/
ids/0015.html , August 1994.

[42] Cheri Dowell and Paul Ramstedt. The ComputerWatch data reduction toetoin
ceedings of the 13th National Computer Security Confergrages 99-108, Wash-
ington, DC, October 1990.

[43] James P. Early. An embedded sensor for monitoring file integrity. CERIAS TR
2001-41, CERIAS, Purdue University, West Lafayette, Indiana, March 2001.

[44] En Garde Systems, Inc. T-sigit on target security. Web pagelatp://www.
EnGarde.com/software/t-sight/ , June 2001.

[45] EnteraSys. Dragon intrusion detection solutions. Web padetpt/www.
enterasys.com/ids/ , June 2001.

[46] Entercept Security Technologies. Entercept 2.0: Advanced e-Server protection.
Web page ahttp://www.clicknet.com/products/entercept/ , June
2001.

[47] Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: A
retrospective. IfNew Security Paradigms Workshqmages 87-95, Caledon Hills,
Ontario, Canada, September 1999. ACM SIGSAC, ACM Press.

[48] Dan Farmer and Wietse Venema. Computer forensics analysis class handouts. Web
page athttp://www.fish.com/forensics/ , August 1999. Accessed in
May 2000.

[49] Stephanie Forrest, Steven Hofmeyr, Anil Somayaji, and Thomas Longstaff. A sense
of self for Unix processes. IRroceedings of the 1996 IEEE Symposium on Security
and Privacy pages 120-128. IEEE Computer Press, 1996. BRL/ftp.cs.
unm.edu/pub/forrest/ieee-sp-96-unix.ps

[50] FreeBSD. Web page attp://www.freebsd.org/ , July 2001.

[51] D. A. Frincke, D. Tobin, J. C. McConnell, J. Marconi, and D. Polla. A framework
for cooperative intrusion detection. Rroceedings of the 21st National Information
Systems Security Conferenpages 361-373, October 1998.

[52] Fyodor (fyodor@dhp.com). The art of port scanning. Intetmégb://www.
insecure.org/nmap/nmap_doc.html , September 1997.

[53] Greg Gillion and Paul E. Proctor. The case for CentraX/CBybrid security so-
lution. White paper, CyberSafe Corporation, March 2001. Ufip://www.
cybersafe.com/centrax/content/CentraxICE_whitepaper.pdf

122

[54] lan Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure en-
vironment for untrusted helper applications. Mmoceedings of the 6th Usenix
Security Symposiunpages 1-13, San Jose, California, July 1996. Uﬂﬁp
IlIwww.cs.berkeley.edu:80/~ daw/papersljanus usenix96.ps

[55] Rajeev Gopalakrishna. A framework for distributed intrusion detection using inter-
est driven cooperating agents. Paper for Qualifier 1l examination, Department of
Computer Sciences, Purdue University, May 2001.

[56] Naji Habra, Baudouin Le Charlier, Aziz Mounji, and Isabelle Mathieu. Preliminary
report on Advanced Security Audit Trail Analysis on Unix (ASAX also called SAT-
X). Technical report, Institut D’'Informatique, FUNDP, rue Grangagnage 21, 5000
Namur, Belgium, September 1994.

[57] Hackerlab. Rx-Posix: : a very fast implementation of the Posix regexp functions.
Web page ahttp://regexps.com/ , June 2001.

[58] Elliotte Rusty Harold and W. Scott MeanXML in a Nutshell: A Desktop Quick
ReferenceO’Reilly, January 2001.

[59] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Architecture of a Network
Level Intrusion Detection System. Technical Report CS90-20, University of New
Mexico, Department of Computer Science, August 1990.

[60] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber. A Network
Security Monitor. InProceedings of the IEEE Symposium on Research in Security
and Privacy pages 296-304, May 1990. UFklttp /[seclab.cs.ucdavis.
edu/papers/pdfs/th-gd-90. pdf

[61] HP Praesidium Intrusion Detection System/9000 Guidéewlett Packard, 3000
Hanover Street, Palo Alto, California, first edition, July 2000.

[62] Hewlett-Packard. Netperf. Website at http://www.netperf.org/, 2001.

[63] Judith Hochberg, Kathleen Jackson, Cathy Stallings, J. F. McClary, David DuBois,
and Josephine Ford. NADIR: An automated system for detecting network intrusion
and misuseComputers and Securit§2(3):235-248, May 1993.

[64] Steven A. Hofmeyr and S. Forrest. Architecture for an artificial immune system.
Evolutionary ComputatiorB(4):443—-473, Winter 2000. URIhItp /lcs.unm.
edu/ forrest/publications/hofmeyr forrest. ps

[65] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaiji. Intrusion detection using
sequences of system call®ournal of Computer Securit$:151-180, 1998.

[66] Steven Andrew HofmeyrAn Immunological Model of Distributed Detection and
Its Application to Computer Security PhD thesis, University of New Mexico,
May 1999. URLftp://coast.cs.purdue.edu/pub/doc/intrusion_
detection/hofmeyer-distributed-detection.ps.gz

[67] Gary Houston. Henry Spencer’s regular expression library. Web palgpat
/larglist.com/regex/ , June 2001.

[68] Xie Huagang. Build a secure system with LIDS. Onliné&p://www.lids.
org/document/build_lids-0.2.html , October 2000.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

123

Craig A. Huegen. The latest in denial of service attacks: “smurfing” descrip-
tion and information to minimize effects. URttp://www.pentics.net/
denial-of-service/white-papers/smurf.cgi . Accessed on January
18, 2001, February 2000.

Koral llgun, Richard A. Kemmerer, and Phillip A. Porras. State transition analysis:
A rule-based intrusion detection approadiEEE Transactions on Software Engi-
neering 21(3):181-199, March 1995.

Internet Security Systems. RealSecure. Web pagéttat//www.iss.
net/securing_e-business/security_products/intrusion_
detection/ , June 2001.

Capers JonesApplied Software Measurement: Assuring Productivity and Quality
McGraw-Hill, New York, New York, 1991.

Y. Frank Jou, Fengmin Gong, Chandru Sargor, Shyhtsun Felix Wu, and W. Rance
Cleaveland. Architecture design of a scalable intrusion detection system for the
emerging network infrastructure. Technical Report CDRL A005, MCNC Informa-
tion Technologies Division, Research Triangle Park, North Carolina, April 1997.

Richard A. Kemmerer. NSTAT: A model-based real-time network intrusion detec-
tion system. Technical Report TRCS97-18, University of California, Santa Barbara,
Computer Science, June 17, 1998. URfp://ftp.cs.ucsh.edu/pub/
techreports/TRCS97-18.ps

Florian Kerschbaum, Eugene H. Spafford, and Diego Zamboni. Using embedded
sensors for detecting network attacks.Piroceedings of the 1st ACM Workshop on
Intrusion Detection System&CM SIGSAC, November 2000.

Gene H. Kim and Eugene H. Spafford. The design and implementation of Tripwire:
A file system integrity checker. IRroceedings of the 2nd ACM Conference on
Computer and Communications Securfigges 18—29, Fairfax, Virginia, November
1994. ACM Press.

Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulnerabilities
in privileged programs by execution monitoring. Prmoceedings of the 10th An-
nual Computer Security Applications Conferenuages 134-144, Orlando, Florida,
December 1994. IEEE Computer Society Press.

Ivan Krsul. Software Vulnerability Analysis PhD thesis, Purdue Univer-
sity, 1998. URLftp://coast.cs.purdue. edu/pub/COAST/papers/
ivan-krsul/krsul-phd-thesis.ps.Z

Sandeep Kumar and Eugene H. Spafford. A pattern matching model for misuse
intrusion detection. IfProceedings of the 17th National Computer Security Confer-
ence pages 11-21, October 1994. URttp://www.cerias.purdue.edu/
homes/spaf/tech-reps/ncsc.ps

Sandeep Kumar and Eugene H. Spafford. A software architecture to support misuse
intrusion detection. IfProceedings of the 18th National Information Systems Se-
curity Conferencgpages 194-204. National Institute of Standards and Technology,
October 1995.

124

[81] Benjamin A. Kuperman and Eugene H. Spafford. Generation of application level
audit data via library interposition. CERIAS TR 99-11, COAST Laboratory, Pur-
due University, West Lafayette, Indiana, October 1998. URIps://www.
cerias.purdue.edu/techreports- ssl/publlc/99 11.ps

[82] LANguard Network Security Products. LANguard security event log monitor. Web
page atttp://www.languard.com/languard/ , June 2001.

[83] William LeFebvre. Top: display and update information about the top CPU pro-
cesses2001. Unix manual pages.

[84] PRC-PRCis™ whitepaper Litton PRC, 1999. URLhttp://www.bellevue.
prc.com/precis/solution.pdf

[85] Paul Long. Metre v2.3. Software metrics tool availablehép://www.
lysator.liu.se/c/metre-v2-3.html , 2000. Accessed on January 18,
2001.

[86] Teresa F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, H. S. Javitz,
A. Valdes, and T. D. Garvey. A real-time intrusion detection expert system (IDES)
— final technical report. Technical report, SRI Computer Science Laboratory, SRI
International, Menlo Park, California, February 1992.

[87] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.4BSD Operating Sy#tddison-Wesley,
Reading, Massachusetts, 1996.

[88] MimeStar Intrusion Detection. SecureNet PRO. Web pagbettat//www.
mimestar.com/products/ , June 2001.

[89] MITRE. Common vulnerabilities and exposures. Web paghttgat//cve.
mitre.org/ , 1999-2000.

[90] Abha Moitra. Real-time audit log viewer and analyzer. Proceedings of the 4th
Workshop on Computer Security Incident Handlikgrum of Incident Response
and Security Teams (FIRST), August 1992.

[91] Paolo Moroni. CERN network security monitor. liProceedings of
the 1st International Workshop on Recent Advances in Intrusion Detection
Louvain-la-Neuve, Belgium, September 1998. Online proceedings, avail-
able at http://www.raid- symposmm org/raid98/Prog_RAID98/
Table_of_content.html

[92] Abdelaziz Mounji. Languages and Tools for Rule-Based Distributed Intrusion
Detection D.Sc. thesis, Fac@s Universitaires, Notre-Dame de la Paix, Namur
(Belgium), September 1997. URip://ftp.cerias. purdue edu/pub/
doc/intrusion_detection/mounji_phd_thesis.ps.Z

[93] Biswanath Mukherjee, Todd L. Heberlein, and Karl N. Levitt. Network intrusion
detection.|[EEE Network 8(3):26—41, May/June 1994.

[94] NetBSD. Web page dittp://www.netbsd.org/ , July 2001.

[95] Network ICE Corporation. BlackICE Sentry. Web page hip://mwww.
networkice.com/products/blackice_sentry.html , June 2001.

125

[96] Victoria Neufeldt and David B. Guralnik, editor8Vebster's New World Dictionary
of American EnglishSimon & Schuster, Inc., third college edition, 1988.

[97] Peter G. Neumann and Phillip A. Porras. Experience with EMERALD to date.
In Proceedings of the 1st USENIX Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, California, April 1999. URtttp://www.sdl.sri.
com/emerald/det99.ps.gz

[98] Tim Newsham. Format string attacks. Whltepaper Guardent, 2000. RitRL
/ljulianor.tripod.com/tn-usfs.pdf

[99] NFR Security. Overview of NFR network intrusion detection. White pa-
per, June 2001. URDbttp://www.nfr.com/products/NID/docs/NID_
Technical_Overview.pdf .

[100] Stephen Northcutt and The Intrusion Detection Team. Intrusion detection: Shadow
style. Technical report, SANS Institute, 1998. URttp://www.docshow.
net/ids/shadowstyle.zip .

[101] Okena. Stormwatch technical white paper. White paper Okena, 2000httiiR L
/lwww.okena.com/products/literature.htm

[102] Michael Okuda and Denise Okudahe Star Trek Encyclopedia:A Reference Guide
to the Future Simon and Shuster Incorporated, August 1999.

[103] OpenBSD. Web page http://www.openbsd.org/ , July 2001.

[104] OpenBSD. The ports and packages collection. Web padst@t/www.
openbsd.org/ports.html , June 2001.

[105] Openwall Project. Linux kernel patch from the Openwall project. Web page at
http://www.openwall.com/linux/ , June 2001.

[106] Packet Storm. Web pagel#tp://packetstorm.securify.com , 2000.

[107] Vern Paxson. Bro: A system for detecting network intruders in real-time.
In Proceedings of the 7th Annual USENIX Security SympgsiGan An-
tonio, Texas, January 1998. URItp://ftp.ee.lbl.gov/papers/
bro-usenix98-revised.ps.Z .

[108] Wendy W. Peng and Dolores R. Wallace. Software error analysis. NIST Spe-
cial Publication 500-209, National Institute of Standards and Technology, Gaithers-
burg, Maryland, March 1993. URNDttp://hissa.nist.gov/HHRFdata/
Artifacts/ITLdoc/209/error.htm

[109] Charles PfleegeBecurity in ComputingPrentice Hall, second edition, 1997.

[110] PGP Security. Cybercop monitor. Web pagehé#p://www.pgp.com/
products/cybercop-monitor/default.asp , May 2001.

[111] Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Maureen Stillman, and Fe-
lix Wu. The common intrusion detection framework architecture. Web page at
http://www.gidos.org/drafts/architecture.txt , May 2001.

126

[112] Phillip A. Porras and Peter G. Neumann. EMERALD: Event monitoring enabling
responses to anomalous live disturbance®rboteedings of the 20th National Infor-
mation Systems Security Confereruages 353—-365. National Institute of Standards
and Technology, October 1997.

[113] Richard Power. 1999 CSI/FBI computer crime and security sufvegnputer Secu-
rity Journal, Volume XV/(2), 1999.

[114] Katherine E. Price. Host-based misuse detection and conventional operating
systems’ audit data collection. Master’s thesis, Purdue University, December
1997. URLhttp://www.cerias.purdue.edu/techreports/public/
97-15.ps

[115] Paul Proctor. Computer misuse detection system (CNfp8oncepts. InSAIC
Science and Technology Trendsphges 137-145. SAIC, December 1996. URL
http://cp-its-web04.saic.com/satt.nsf/lauthor?OpenView .

[116] Psionic Software. The Abacus project. Web paghbtgt://www.psionic.
com/abacus/ , June 2001.

[117] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of
service: Eluding network intrusion detection. Technical report, Secure Networks,
Inc., January 1998.

[118] Andrew Rathmell and Lorenzo Valeri. Information warfare and the asymmetric
threat: An approach to early warning. Technical report, International Center for
Security Analysis, 1997. URDbttp://www.icsa.ac.uk/Publications/
asymmetric-nf.htm

[119] Recourse Technologies. ManHunt. Web padstat//www.recourse.com/
products/manhunt/hunt.html , June 2001.

[120] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Reviedv(1):31-41, January 1997.

[121] Martin Roesch. Snort: Lightweight intrusion detection for networks. Pto-
ceedings of the LISA’99 conferenddSENIX, November 1999. URIhttp:
Ilwww.snort.org/lisapaper.txt :

[122] RootShell. Web page attp://www.rootshell.com , 2000.

[123] Ryan Net Works, LLC. CyberTrace intrusion detection system. Web pddgpat
/lwww.cybertrace.com/ctids.html , June 2001.

[124] Sanctum. AppShield: Automated web application control and security.
Web page athttp://www.sanctuminc.com/solutions/appshield/
index.html |, June 2001.

[125] Scoadmin: invoke SCOadmin applications or configure SCOadmin hieraBamnia
Cruz Operation, 2001. SCO Unixware manual page.

[126] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spafford, Au-
robindo Sundaram, and Diego Zamboni. Analysis of a denial of service attack on
TCP. InProceedings of the 1997 IEEE Symposium on Security and Pripages
208-223. IEEE Computer Society Press, May 1997.

127

[127] Scut and Team Teso. Exploiting format string vulnerabilities. Online document at
http://julianor.tripod.com/teso-fs1-1.pdf , March 2001.

[128] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Systems in In-
trusion Detection: A Case Study. Proceedings of the 11th National Computer
Security Conferengéctober 1988.

[129] Secure Worx. Defense Worx network intrusion detection system. Web page
at http://www.secure-worx.com/products/network_ids.html ,
June 2001.

[130] SecurityFocus. Web page http://www.securityfocus.com/ , 1999—
2000.

[131] Robert S. Sielken. Application intrusion detection. Technical Report CS-99-17,
Department of Computer Science, University of Virginia, June 1999. ®RL
/Iftp.cs.virginia.edu/pub/techreports/CS-99-17.ps.Z .

[132] Stephen Smaha. Haystack: An intrusion detection systenPrdoeedings of the
4th Aerospace Computer Security Applications Confergmages 37—44, December
1988.

[133] Steven R. Snapp, S. Smaha, D. M. Teal, and T. Grance. The DIDS (Distributed
Intrusion Detection System) Prototype.Rroceedings of the USENIX Summer 1992
Technical Conferen¢gages 100-108, San Antonio, Texas, June 1992.

[134] Michael Sobirey. The intrusion detection system AID. Web page
at http://www-rnks.informatik.tu-cottbus.de/ sobirey/aid.
e.html , June 2001.

[135] Anil Somayaji and Stephanie Forrest. Automated response using system-call delays.
In Proceedings of the 9th USENIX Security Symposiugust 2000. URLhttp:
/lcs.unm.edu/ forrest/publications/uss-2000.ps

[136] SourceFire Inc. OpenSnort Sensor. Web paddtpt//www.sourcefire.
com/html/products.html , June 2001.

[137] Eugene H. Spafford and Diego Zamboni. Intrusion detection using autonomous
agents.Computer Networks34(4):547-570, October 2000. UFHItp [Iwww.
elsevier.nl/gej- ng/10/15/22/49/30/25/art|CIe pdf

[138] Lance Spitzner. Intrusion detection for FW-1: How to know when you are be-
ing probed, November 2000. URittp://www.enteract.com/ Ispitz/
intrusion.htm|

[139] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS: A graph based intrusion detection
system for large networks. Proceedings of the 19th National Information Systems
Security Conferengerolume 1, pages 361-370. National Institute of Standards and
Technology, October 1996.

[140] W. Richard StevensICP/IP lllustrated volume 2. Addison-Wesley, 1994.
[141] Crontab: user crontab fileSun Microsystems, 2001. SunOS 5.7 manual page.

128

[142] Df: report filesystem disk space usa@in Microsystems, 2001. SunOS 5.7 manual
page.

[143] Inetd: Internet services daemo8un Microsystems, 2001. SunOS 5.7 manual page.
[144] Netstat: show network statuSun Microsystems, 2001. SunOS 5.7 manual page.

[145] Ping: send ICMP ECHCREQUEST packets to network hos&un Microsystems,
2001. SunOS 5.7 manual page.

[146] Ps: report process statusun Microsystems, 2001. SunOS 5.7 manual page.

[147] Kymie M. C. Tan, David Thompson, and A. B. Ruighaver. Intrusion detection sys-
tems and a view to its forensic applications. Technical report, Department of Com-
puter Science, University of Melbourne, Parkville 3052, Australia, year of publica-
tion unkown. URLhttp://www.securityfocus.com/data/library/
idsforensics.ps

[148] AXENT Technologies. AXENT technologies’ NetProwlérand Intruder AlertM.
White paper, Hurwitz Group, September 2000. URtp://www.safecomms.
com/pdf/symantec/ita_hurwitzreport_wp.pdf

[149] Touch Technologies, Inc. INTOUCH INSA - network security agent. Web page at
http://www.ttisms.com/tti/nsa_www.html , June 2001.

[150] H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session activity.
In Proceedings of the 1989 IEEE Symposium on Research in Security and Privacy
pages 280-289, 1989.

[151] Wietse Venema. TCP WRAPPER: Network monitoring, access control and booby
traps. In USENIX Association, editoProceedings of the 3rd UNIX Security Sym-
posium pages 85-92, Berkeley, California, September 1992. USENIX.

[152] G. Vigna and R.A. Kemmerer. NetSTAT: A Network-based Intrusion Detection Sys-
tem. Journal of Computer Security(1):37-71, 1999. URIhttp://www.cs.
ucsb.edu/rsg/pub/1999 vigna kemmerer_jcs99.ps.gz .

[153] Gregory B. White, Eric A. Fisch, and Udo W. Pooch. Cooperating security man-
agers: A peer-based intrusion detection syst#aiE Network pages 20-23, Jan-
uary/February 1996.

[154] Scott M. Wimer. Cylantsecut¥: A scientific approach to security. Whitepa-
per, Cylant Technology, Inc., 2001. URDbttp://www.cylant.com/
whitepapers/cs-scientific.shtml .

[155] X-Force. Web page #ittp://xforce.iss.net , 2000.

[156] Jiahai Yang, Peng Ning, X. Sean Wang, and Sushil Jajodia. CARDS: A distributed
system for detecting coordinated attacksPmceedings of IFIP TC11 16th Annual
Working Conference on Information Secuyipages 171-180, August 2000. URL
http://ise.gmu.edu/"pning/sec2000.ps)

APPENDICES

129

Appendix A: Detectors and Sensors Implemented

The tables in this appendix list all the detectors and sensors that were implemented in
the original implementation phase of the ESP project (before the modifications that resulted
from the testing phase described in Section 5.2).

The columns in these tables have the following meanings:

N: Reference number of the detector, starting with an “S” for specific detectors and with a

“G” for generic detectors.
ID: Identifier of the detector.
WVuln: For specific detectors, vulnerable operating system or program.
S: Whether the detector is stateful: “Yes” (Stateful) or “No” (Stateless).

Src: Types of data sources used: “Net” (Network data), “SysState” (System state), “User”
(User-provided data), “FileSys” (File system state), “App” (Application data), “Prog”

(Program state) and “SysInfo” (System information).
Dir: Implementation source directory.
Class: Corresponding category in the taxonomy proposed by Krsul [78] (see Appendix C).
Det: Reference number of detectors that cover the current one, if any.
Imp: Reference number of detectors that implement the current one, if any.
E: ESAM (Executable Statements Added or Modified) metric for the detector.
B: BOCAM (Blocks of Code Added or Modified) metric for the detector.

Not all fields apply to all the detectors. When not applicable, a field is left empty or with

the string “n/a”.

130

(ebed 1xau uo panunuod)

'asgeaid Ul 92IAI9S JO [elusp 1SY dOL

91e1ISSAS
T ¢ 029 T-7-0T-¢ Jaunsu 18N ON asgsaid €500-666T-IND CTS
"UySseld e asned 0] Jaxyoene ajowal e SMojje Sgaald Ul 92IAISS JO [eluap uoneiuaswbely d|
T ¢ ¢-2-01-¢ launau 1sN ON di(w) 2S00-666T-IAD TTS
"‘BunlIMIBA0 10 uoneald 9|y Arenigre smojje X|d| Japun dmas)
129 '6T9 T-2-¢1-¢ ON XUl 6¥00-666T-IND 0TS
"'8°8/€'8°8 [rewpuas ul AlljigelaujnA MOJLISA0 Jayng
1asn
L 0T € lrewpuas ‘Bold s8A lrewpuas(w) /¥00-666T-IND 6S
"8|qeleA [eluswuolInug NY3L Buisn welboud uiboj Jo MojIaA0 Jayng
Z S 99 1-2-€C pulbo 19N S9A puibop(w) 9%¥00-666T-IAD 8S
“X1d| ul weiboid |99 1sIpgam Buisn uonndaxa puewwod Arenlgly
€9 €-1-6-¢ pdny ON XUl 6€00-666T-IND /LS
'sabo|inud 1001 ureb 01 si1asn [e20] smojje abexoed ud| paseq-aqsg ul MOJJUSA0 Jajing
T ¢ 19 T-1-G-C idj 1esn oN dj(w) 2€00-666T-IND 9S
'SWIBISAS X[H| 19S U0 purwWIWO 1933 Ul MOJLIBA0 Jajing eIA sabajialid 1004
T ¢ 9 T-T-9-¢ w Jesn ON XUl /200-666T-IND SS
"'SWIBISAS X[H| 19S U0 purWIWOD 19Sd Ul MOJJUBA0 Jajing BIA sabajialid 100y
9 T-1-G-¢ ON XUl 9200-666T-IND ¥S
‘uonouny ()Jnsdxa BIA ‘1SIpJ Ul MOJIBA0 J1ayNnq eI sabajiauid 1001 suieb 1asn @207
19 T-1-G-C ON Isipi(w) 2200-666T-IND €S
"99IAJISS JO [eluap d| pue
T ¢ 0z9 T-T-0T-¢C JBundu 18N ON di(w) 9T00-666T-IAD ¢S
"1asn Juabe-yss ayy 01 Buibuojaq sjunodoe
9]0WaJ SS929e 0] SIasn [e20] Jay10 Buimole ‘weibold Juabe-yss eIA SJUSI|D HSS WOJ] S[enuapald usjols
T ¢ 129 ‘819 ¢-2-21-¢ ysssAsaj4 oN yss(w) €T00-666T-IAD TS
a 3 duw 9@ sse|D el AS S UInA da N

‘pajuawa|dwi S1010818p 21193ds JO 1S :T'V 9|geL

131

(ebed 1xau uo panunuod)

"S19SN [220] 0] SS829. 1004 SAAIB 12yl MOJLISA0 Jayng e sey X|d| ul welboid sisuud syl

9 T-1-G-¢ ON XUl 80T0-666T-IND €CS
"wi01s 19y0ed 4an 10 quoq dan ‘ee
‘JOAISS BY) POOJ} 01 WdpUR) Ul Pash aq ued ‘SadIAIds 4dN JO Suoneuiquiod 1aylo Jo ‘uabireyd pue oydo3

v 8 1% plul 1N ON proul(w) €0T0-666T-IND 2ZS
"SI} BIIMIBAO 0] PASN 8Q UrI Saskle 8p0JaP |leWPUSS

Z 9 1% [lewpuss JIssn ON lrewpuas(w) 9600-666T-IAD TS
‘|rewpuas ul puewwod bngaq

T 1 1% [lewpuss JIssn ON lrewpuas(w) G600-666T-IAD 0ZS
‘Apoa11oo sabajinld Buiddoip 10u Aq SS299® 1004 UIRIQO 0] SI8SN [RI0] SMO|[e pueWWOod dnNYoo|su X|V

a1e1ISSAS

T € ¢ 1-¢t-¢ dnyoojsu ‘'sAsajl4 ON XIV €600-666T-IAD 6TS

‘Buijoods moje siaquinu asuanbas 401 ajgeldipaid
a1eISSAS

T ¢ T Jundau 18N ON doL(w) /2/00-666T-IAD 8TS
‘syoene buljoods Buimoje ‘paredoje Ajjenuanbas ate suod 401 Buiuaisi

€ 2T €19 1 JBundu 18N S9A doL(w) +200-666T-IAD LIS
J31|Jea pue T°T'T SUOISIAA 10} MOJJBAO0 Jayng axood pdny ayoedy

T ¢ 1-1-9-C pdny 18N ON pdny(w) TL00-666T-IAD 9TS
"JOAJIBS BY] UO S3Jl} 1S1| 01 19y oene ue smojie welboud 162-1sa]

€9 v-1-2-C pdny ON IBo-)sa(w) 0,00-666T-IAD STS
"1aAlas 196.e) ay) uo ajI) Aue peal 0] Jayoene ue smojje 1duas BojAw dHd 19D

€9 T-1-¢1-¢ pdny ON dHd(W) 8900-666T-IAD VTS
‘Augelaulna (T)uoneaen Jopuan aidnnin

T ¢ €-1-¢¢ uonedea Jesn ON uoneoeA(w) /G00-666T-IAD E€TS

a 3 duw 12d sse|D el AS S UInA da N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

132

(ebed 1xau uo panunuod)

"S3|1} 221110 SIIMISAO 0] J9XIeNe Ue SMO|je purwwWwod sd S1ejos ay) Ul UoNIpUod el v

TZ9 ‘9T9 ‘L19 v-1-L-C ON suelos ¥9T0-666T-IND SES
"UMOUY| SI UOITBI0| puR alRU 3SOYM 3|} Aue aAaIN18) pue JIaAISS N4d
ay1 Uuo 0808 1od 01 198UU0d 0] SiaxdeNe SMOje I N SMOPUIA uo (N4d) Jabeuew jremall) X|d 09SID

229 ¢-¢cl-¢'eT-¢¢ ON SMOPUIM 8GT0-666T-IND VES
"92IAISS JO [eIUBP B Ul S)Nsal yoene uoneiuawbel) 4| DvdD pue |lemall) Xld 09sID

T ¢ TS T1S ¢-¢-01-¢ lsunsu ON Xld 03s1D /ST0-666T-AND €ES
"MNNUIM Bxe ‘Wod SOIg13N ybnoiyy a21A18s o [eluap erep (§00) pued JO IN0 1 N/G6 SMOPUI

T ¢ umouxun Jaupsu 18N ON SMOPUIM €ST0-666T-IAND CES
"MO|LI9AO0 J3JJNg B BIA SS329€ 100U uleb 0] s1asn [20] SMO|[e swalsAs xnuiq Auew uo weibolid dip syl

T ¢ 9 T-1-6-¢ dp Jesn oON xnuim - LETO0-666T-IND TES
'SS999k 100. ureb pue saj| Aresige 0] 81LUM 0] 1aSh [e20] B SMO|[e SLe|0S Ul |[001UIWpPY

TZ9 '6TO 1-¢-¢1-¢ ON suel0os GET0-666T-IND 0€S
'SS999k 1004 ureb pue sajij Areaigre a1lIMISA0 0] SI9SN [B20] SMO|[e ‘X8 pue IA Ul pasn ‘anlasaldx3

T TZ9 619 T-¢-¢1-¢ ON INW) ZETO-666T-IAD 6ZS
"UOITRAIR]IS 92IN0SaJ pue MO|LIBAO0 I8N SODJO |rewpuas

T T 01O T-1-9-¢ [rewpuss Boid ON lrewpuss(w) TETO0-666T-IAND 82S
‘AlIjIgeIauNA SpojN uowae(|lrWpPUSS

€ € €-¢-L¢ [rewpuageISsAS saA lrewpuas(w) 0€T0-666T-IND /ZS
‘Aljigqelauna suolissiwiad dnoib [lrewpuas

T ¢ 21212 lrewpuassAsall{ ON lrewpuas(w) 62T0-666T-IAD 92S
"yreaq Jo Buid exe ‘921AIaS Jo [eluap e ul nsal ued siayoed Buid dIND| pazISIan0

T € 119 1-2-0T-C JBundu 11BN ON dNDI(w) 82T0-666T-IAD S¢S
"POOJI NAS BYe ‘Uoioauuod ay) a19|dwod 0] IV ue Bulpuas Jana
1NOYIIM Suonoauuod ajdnjnw a1eald 01 siaxoed NAS Auew SpPUaS Jaydee Ue Usym adIAISS JO [elua(

T ¢ 1 1ounasrelSsAs oN dol(w) 9TT0-666T-IAD _ ¥2S

a 3 duw 12d sse|D g S S UuinA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

133

(ebed 1xau uo panunuod)

"UOIIND3X3 PUBLIWIOD 3)0WI SMO|[e £ TA uowaep d11H YSION Ul MOJJBA0 Jayng

T ¢ €9 1-1-2-C pdny ddvy oON pdny vSON(W) 2920-666T-IAD 9¥S
"1soy e dn %20] 1o yseid Aew sabessaw 19a11pal DI

T 8 umouxun Jauneu 19N ON dWDoI(w) G920-666T-IAD SPS
"sJa)0eleydeIaW [|8ys BIA UOIINJaXa purwwod smojie weiboud 199 IMayl

€9 v-1-2-¢ pdny ON M(w) 09z0-666T-3IND t¥S
196110 4, Y2JB3S BIA WIBISAS B U0 SIasn |e sisl| piabulyd

T ¢ e-1-2-2 pisbuy J18sn ON psabuyo(w) 6520-666T-IND E€¥S
‘135 ased
-Jaddn ue Jo peajsul pasn S| purwWWOD 196 9seIIaMO| B USYM S3|1} SISI| JOAISS apA Yorllise adeasiaN

JEVNEISNVENTY

€9 €-1-2-¢C pdny ON Yoeilised(w) 6£20-666T-IAD 2VS
‘awreu Buo| e yum A1010a.1p © 01 pMI B swopad 1asn uaym JIaAISS d1- N-AISS Ul MOJLISAO Jayng

T ¢ 89 T-T-¢-¢ ON SMOPUIM 6TC0-666T-IAD TVS
‘s1axoed ajqeyoealun 4iND| pabio) Buipuas Ag a21A18S O [elua(

a1eISSAS

T ¢ umouxun l|unau 18N ON sSouns $T20-666T-IAND 0VS

‘'T'8'8 pue 0'g’g [lewpuas Ul MO[1BA0 Jaynd JINIIN
1asn

8 6 € [rewpuas ‘Boid S8A [rewpuas(w) 9020-666T-IAD 6ES
oene puap|

Z v V-T-v-¢ rewpuas 18N S8A Irewpuss(w) +020-666T-IAD 8ES
"A10128.11p Pa1oLISal Byl SPISINO S3|I} 0] SS8IIR MO||e PINOM d141 Jo suoneuawajdwi Xxnui

T ¢ 2-¢-¢t-¢ pdip Jesn ON Xnur €8T0-666T-IND /€S
‘'swelb
-0id Arenigie a1ndaxa 0] Jaydee 310Wal B SMO|[R JaAISS gam alSgapn 2yl ul weiboud Japeojdn ayl

€9 Z-1-¢1-¢ pdny ON SMOPUIM //T0-666T-IAD 9E€S

g 3 duw 18d sse|D g s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

134

(ebed 1xau uo panunuod)

"9JIAJ3S JO [eIUSP B 3Sned 0] SI9
-Yoe)e 910Wal SMOJ[e SIBAISS 4O 1 dSdiaN ul s|ied ()idadoe pue ()109|3S s} Usamiag UONIPUOD aJel Y

Z € €19 1-2-v-C lounsaIeISSAS SaA doLl(w) 96€0-666T-IAND LSS
79N prepueisuou e Buisn Ag J9AISS Byl UO Sa|l} peal 0] 1ayde)e ajowal e
SMOJ|[e SWAISAS SMOPUIA BWOS Ul JIBAISS B\ [eUOSIad 8bediuolH pue 1aAIaS g\ [eU0SIad JOSO0IDIN

€9 e-1-¢-¢ pdny 18N ON SMOPUIM 98€0-666T-IAD 9SS
"S9IIAIBS YI0MIBU 0] SUONIauu0d adnjnw ybnouay) sajgel ssadoid s,aulyoew e
Buljjy Aq 221A18S JO [eluap e wiouad 0] Jayoene 910Wal B SMO|[e SWaISAS XIuN Ul Yoene ajgel SSa20.d

LS 1 ON ploul(w) 2/€0-666T-IAD GSS
"J00J SB SpUBWWO 31NJ9Xa
0] S18sN [20] SMO|[e swalsAs Bunelado Jaylo pue xnui ueigad ul Aujnn Jadns ayl ul MOJLISAOC Jajing

1999 T1-1-6-C 'T-¢-€-¢ ON ladng(w) €/€0-666T-IAND ¥SS
'SS399k 1004 uleb 01 s1asn [e20| sMmojje weiboid puold aremyoe|S XNui Ul MOJLBAO0 Jaing

T 1 2999 T-¢-€-¢ uold Jssn ON Xnur7 0v€0-666T-IND €SS
"SYuUljwAS ybnoiyr Saji) 1004 311D 0] SI9SN [@20| SMO|e XN-dH ul weiboid [dd

129 ‘619 G-T-,-¢ ON XN-dH ¥ZE0-666T-AND ¢SS
"SI} a|gqeInWiWI 10 Ajuo-puadde Ajpow 01 S18sn sSmoje uondun) deww qsgaaid

Z ¢ € uReISsAis oN [pui(w) €2€0-666T-AND TSS
'S921Aap ybnouyl Alowaw Ajipow 01 dnoub wiawy ay) ul Siaydene 20| SMoje gdsg ul uonoun) dew iy

1SS € ON lpuss(w) #0€0-666T-IAD 0SS
"'sawreulsoy SNA bBuoj ybnouayl pd| asgaaid ul MojpIaA0 Jayng

T 1 69 T-1-9-¢]au 11BN ON asdesld 66¢0-666T-IND 67S
's74N Buoj Buisn S| ul 82IAISS JO [elUBq

T ¢ [4%9) T-1-¢-¢ pdny 1IN ON SMOPUIM\ T8¢20-666T-IND 8VS
"s1ajoeleyiugpuas Ag 18uld) T°G'Z SejoS YBnoiy) 321AI18s 4o [eluag

Z 9 umouxun pUd} 18BN S8BA suel0os €.20-666T-IAD VS

a 3 duw 12d sse|D la S S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

135

(ebed 1xau uo panunuod)

"99IAJISS JO [eluap
© 9sned ued 1ey) oene Jnws e Joj Buimoje ‘pamoje are sassaippe 1seopeolq 0} sabessaw dnNDI

91eISSAS

g ¢¢ Tv JBunau 18N S8A dNDI(W) €TS0-666T-IAD 99S
‘Buid gsguado ul mojLIaA0 J13)ing

T ¢ € fud J1esn ON asguado ¥8¥0-666T-IAD G9S
‘wiayl Jo Jaquwinu abe| A1aA e 1o ‘siapeay Buo| Ajanissaoxa Buisn yoene adlnlas-1o-feluad

T T T-T-¢-¢ jrewpuas I18sn ON rewpuas(w) 8/¥0-666T-IAD ¥9S
‘Alo1oalip reuosiad
S,Jasn ay1 Jo apISINo Saji} Alelligie SSa29e 0] °° asn 0] Siaydoele alo0wal SMoje Janlasgapy O] ayl

229 2-2-¢1-¢ ON SMOPUIM ¥/.70-666T-IAND £9S
‘uonnq |aoued ay) ybnoiyl uoneonuayl
-ne 1noyiim Axoid syl ainbiyuodal 0] Jaydee aloWal B SMO|[e S1N0JUIAA Ul J1aAIas Axold ajowal ay |

€9 € pdny ON SMOPUIM. T/¥0-666T-IAD 29S
's9|l} AJIpoW 0] SIasn [e20]| SMOJ[e 8102°J} SLe|0S

/92O v ‘T-v-1-¢ ON sue|os Zvv0-666T-IAND T9S
"9|I} uoneinbijuod aJrewnoid ayy ul suoisuedxa eIA
SpUBLLLWOD 81NJ3Xa 0] SIaXJklle [BJ0] 10 310D SMO|[e ZT € UOISIaA 2101a([lewd0.1d ul MOJLBA0 Jayng

1asn

T 1 1-2-1-2 rewooud 99N ON Irewoosd(w) 6EY0-666T-IAD 09S
‘uondauuod ayl bulysiigelse Ajnj aiolaq 1ake| uonedidde
3y 0] Biep ssed pue u0IYBUUOD D1 B Joods ued Siaydene a10wal ‘9e'0 g UOISIaA alojag Xnui uj

T ¢ €-2-01-¢ Jaundu 1®N ON Xnurl ¥T70-666T-3AD 6SS
‘uon
-NJ38Xa PUBLILLOID 3]0 SMO|[e SWaISAS SMOPUIAN 10) JaAIBS d1INS XeN-|IeIN @Y1 Ul MO|LIBAO Jayng

ST9 T-T-2-¢ ON SMOPUIN\ 0%70-666T-IAD 8GS

g 3 duw 18d sse|D g s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

136

(ebed 1xau uo panunuod)

'S3110193lIp Jasn Areiodwial ul Yoene yuljwAs e ein sabajialid ureb 01 S1asn 20| SMOj[e [l_N-X 3aM

129 '6TO 1-¢-¢1-¢ ON JaM(w) G€20-666T-IAND S.S
‘Indul pawojfew BuISn UOISS3S ® X20|un 0] SIasn [e20| Smojje welboid X200 3aM ayl
€ € € apy Boid saA Iad(w) TE€L0-666T-AND V.S
"SWIBISAS Jay10 01 109UU09 01 Alelpawlialul ue se)l ash 0}
siayoene ajowal Buimole ‘Alo1oalip gam a1ignd e ul 162 16wayoded s|reisul weiboid pinbs 1eHpay ayl
€9 4 pdny ON pinbs(w) 0TL0-666T-3IAD €.S
‘PIdY SODTS Buo) e eIA sabajiaid 1001 ureb 0] s1ash [e20] Smojfe pJabuljo ul MOJJIBA0 Jayng
(0] %3) 1-1-9C ON psobuyo(w) 80L0-666T-IAD 2.S
'sl1ay1o pue abeyoed s|in
-we xnui ayl ul papiaoad Aujioe) Buibbo) (pue) uowaep Jaiunowolne As|ayiag ul MOJJISA0 Jajing
Z v 1-1-2¢¢ pwe ddy oON pwe(w) ¥0.0-666T-3AD T.S
"S9IINSP Y20|q pue 18]
-oeJieyd uo sbejyoj pue sbeyd 18s 01 S1asn Mmoje swalsAs Bunelsado xiun Jaylo pue ‘|gasg ‘asguado
Z ¢ T uwiasAsall4 ON [pui(w) €020-666T-AND 0.S
'saba|inud 1001 ureb o1
Sl1asn [ed0| SMojje Areiql| paJteys X[el|00] Ul d|geLieA JUSWUOIIAUS NOISSIS L1 Ul MOJBA0 Jayng
99 1-2-€¢ ON 3ao(w) €690-666T-IAD 69S
"oene YUlJWAS e BIA 3|1} SAINISUSS S)LUMIBSAO 0] JBSN [eI0| B SMO|[e 9°Z SUB|0S Ul IBAUOIWIPS
TZ9 '6TO 1-¢-¢1-¢ ON sue|jos 9/90-666T-IAD 89S
19bie) ayl Buipooy) Aq 821AI8S JO [eluap
B asned ued 1eY) yoene a|bbei4 € 1o) Buimoje ‘pamojie ase sassalppe 1seapeolq 0] sabessaw 4an
91rISSAS
S 7T T'Y JBuldu 18N S8A dan(w) +TS0-666T-3AD 19S
a 3 duw 12d sse|D la S S UuinA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

137

(ebed 1xau uo panunuod)

‘Areiq 9q1 ayy ul pdiy X1V Ul MOJLIA0 Jayng

89 T-T-¢-¢ ON XIV 68.0-666T-9dAD +8S
'SS329€ 100J Ureb 01 s1asn [e20| smoje weiboud 19sd| SLe|0S Ul MOJBA0 Jayng
9 T-T1-G6-¢ ON suelos €//0-666T-IAD €8S
oene (Jop 10p) e BIA Sa|l} Aediqgie peal 0] Jayoene
ajowal e mojie Alnn Asaing bedwo) syl pue siuaby wuawabeuey bedwo) jo sjusuodwod gom ay L
[A43) Z2-¢¢l-¢ ON SMOPUIM T//0-666T-aAND ¢Z8S
"3|ll qeIU0ID B Ul O1IVIN Buisn sjuswnbie [rewpusas Jo uonedlyipon
T 9 €-¢-€¢ uold Jesn ON puoso(w) 6920-666T-IAD 18S
"SAlIIUS YV 211e1S 31LIMIBAO0 0] S1ayoed 44V SMo|le asgleN
a1eISSAS
T T € launsu 8N ON dsdie’N $9.0-666T-dAD 08S
"}I0M13U Pa103UU0d
Jayloue Uo Salua dyV AJipow 0] 3410M18U aUO0 UOo siayded 4y SMO|je 1SoY pawoy-ijnw e uo asgienN
91rISSAS
T T € lJaunau 18BN ON dsdidN €9/0-666T-IND 6.S
‘wesboud oipouad
3yl eIA s9|l} Arenigue AJipow 0] J1asn [e20] SMOj[e Sauinod Areiql| S ASgaald Ul MOJLIBA0 Jayng
Z C 9-T1-1-C uabsAsall4 ON asgeaid 19.0-666T-IAD 8.S
"92IAJISS JO [eIUSP B 10NPUOI 0] JayJene alowal
e Buimoje ‘sisanbal usamiaq SPu02as OZT SIem Xnui] JSNS Ul pPlUspI Ul Jo uoneinbiyuod neep v
Poid
T Vv VT plul 11BN ON ploul(w) 9%/0-666T-IND L.S
"1sanbal 139 41 1 H buo) e eia sabajiaud
ureb 0] siayoene 810Wal SMO|[e ISAIBS Moril1Se pue IaAIas aslidiaiug adeds)aN Ul MO[LIBAO Jayng
JEYVEISNOETVY
[4%3) T-T-2-¢ ON yoellise4(w) #¥20-666T-IAD 9.S
g 3 duw 12d sse|D g s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

138

(ebed 1xau uo panunuod)

oele YUIJWAS e BIA Saji) Arelligte AJipow 01 SIasn [e20] smojfe weiboud 1piwnels X[d|

129 619 T-2-¢1-¢ ON XUl 6S60-666T-IND ¥6S
‘siaxoene ajowal Ag 9|qis
-S929® SNy} pue 1004 qam ayl Japun si ey a1 piomssed e ul spiomssed paidAIous sa101s preogMMM
€9 v pdny ON pJeogMMM(W) €560-666T-IND €6S
"SpUBLIWOD 9)NJ8Xa 0] SI9YJeNEe 910WaI SMO|e JAAISS SINSIelS aSnoyeIpaA Ul MOJJBA0 Jayng
[AN) T-1-¢-¢ pdny ON SMOPUIM TE60-666T-IND Z6S
‘plomssed pue swreulasn Buoj e eIA spuewwod Arenige
91NJ9Xa 0) SI9yoele 310WaJ SMO|[e AljiIN uonenSIuIWpE JaAIBS|eay SHJOMIBN[EaY Ul MOJJISAO J1ayng
T-1-¢-¢ pdny ON Janiasreay(w) 9680-666T-IND T6S
"oene JuljwAs e eIA sajlj 1dn1109 01 S1asn 20| SMO|[e JaAlasuadO ODS ul esQJlasn
129 ‘619 T-¢-¢1-¢ ON Jan19suadO 0OS €680-666T-IAD 06S
"1od uoneinbiyuod 41 1H ayr 01 Buuis Buo| e BIA 01da1eDIUNWWOD Ul MOJJBAO0 Jayng
[AR9) T-1-¢-¢ pdny ON SMOPUIM G980-666T-IAD 68S
‘Aadoud asired
10U 0P eyl aj1 By} Ul Saul| SISI] Yydiym ‘Ja1awrered J- ayl BIA s3I} peal 0} S1ash [ed0] sSmojje die sue|os
T-1-¢1-¢ dresAsa|4 ON SUel0S 65980-666T-IAND 88S
oene (10p
10p) e BIA S3|I Areligie peal 0] S1I9Sh 9]0Wal SMO|e JBAISS d2.alul gam O'T Jead)-|le|\ 991UBWAS
[443) (AATA N ON SMOPUIM ¢¥780-666T-IAND /L8S
‘Arelql] 434Sy 8yl ul suonouny uondAioap pue uondAious ayl BIA Z434VSH Ul MOJLIBA0 Jayng
T-1-¢-¢ jalesl Jssn ON joresi(w) +€80-666T-IAD 98S
‘welboud ojunuudlp Sue|0S Ul MOJJISA0 Jajng
79 T-1-G-¢ ON SUe|0S 9080-666T-IAD S8S
dwi 12d sse|D la AS S UInA da N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

139

(ebed 1xau uo panunuod)

74N pai1sanbal ay) Ul Ja10.ieyd ||NU B BIA JBAISS (JaM JUBARS Ul 92IAISS JO [elua(

€9 e-T1-2-¢ pdny ON SMOPUIM\ #T00-0002-IAD ¢0TS
"1sanbal | 39 Buo| e eIA spuewIWOD
91N2axa 0] SiayJeNe al0Wal SMO|[e 19AI8S d11H MMM:IanIasa|dwis xBojeuy ul mojuano Jayng
219 T-T-2-¢ ON SMOPUIN\ TT00-0002-IAD TOTS
"9|qeLeA [elusw
-uoJinua Buoj e eIA sabajiaud ureb 01 siasn [ed0| smojie weibold wdi areppaXxiun ul MOJLIBAO0 Jayng
99 T-2-¢-¢ ON alepMXiun €000-0002-dAD 00TS
‘fo1j0d
1aAJIas ay) Aq pamoj[e 10u SI 1l JI uaAs ‘Jaydid ,auou, 8yl asn 0] JUBID © SMOJ| JBAISS /Z2'Z2'T HSS uy
€ g € Uss J1esn ON yss(w) O0TOT-666T-IAD 66S
‘1sanbali | 39 Buoj e vIA
SpURLLILWIOD 31NJ3Xa 0] SIaxyoeNe alowal SMojje aulbua Yoseas ¥aasell|n ¥29Soju| Ul MOJUSA0 Jajing
T ¢ 1o T-T-¢-¢ pdny ON SMOPUIN\ 9660-666T-IAD 386S
‘uondo (a1n04 piodal) Y- ay1 yum siayoed
abure| Buipuas Ag 92IAISS JO [eIUSP B @SNeI 0] SI3SN [8I0] SMOJ[e X£'0°Z XNulT ul puewwod Buid ay |
T 1 ¥-2-01-C 1aunevIeISSAS ON di(w) 9860-666T-IND /6S
‘|rewpuas
Bundnuisiul Ag aseqelep sele ay1 1dnii0d uayl ‘aseqelep Selje ayl azifeniulal 0] SI9sn SMO|[e |lepwuas
91eISSAS
T 1 2-1-21-¢ rewpuss ‘ddy ON |rewpuas(w) 9/60-666T-IAD 96S
Ylous eye ‘dooj e dn Bumas
Ajrenualod “1soy pajoods ay) 0] Juss si 1ey) abessaw Jolls ue ajelaualb yoiym s1axoed Ddy pawlojew
pajoods Buisn 821AISS JO [RIUSP B 10NPUOI 0] SISYJBNR d10Wal SMO|[e 32IAI8S DdY LN SMOPUIA 8yl
T v umouxun JBunsBu 19N ON SMOPUIN\ 6960-666T-dAD G6S
g 3 duw 18d sse|D la s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

140

(ebed 1xau uo panunuod)

"3|eleA [elJUSWUOIIAUD
HIAOVANYIN aU1 eIA sabajiaud ureb 01 s1asn [e20] SMO[je Xnui ul weiboud uew sy ul MOJJISA0 13)ing

T 9 99 T-2-¢-¢ uew J8snN ON Xnur 0/.T0-000¢-IND OTTS
"¢, SOpPN|oUl Teyl THN pawlojew € BIA
SpUBWIWIOD 91NJaXa 0] SIayde)e al0Wal MOoj[e A1010alIp UIg-SMO 1auaisl| qam ajoeiQ ayl ul Sajil yareq
€9 v-1-2-2 pdny ON SMOPUIN 69T0-0002-IAD 60TS
‘'SpuUBWWOD
91N29Xa 0] Iy 2kl 810Wal B MO|[e Y2IYyM SMO|LBA0 Jayng [elanas sey Axold uonedljdde a1ebajeq ayl
€9 T-T-2-¢ pdny ON arefsla@g(w) S9T0-0002-IAD 80TS
‘Buins 3o9yo uoys
B BIA 9Seqelep e Ssadoe pue uoneanuayine piomssed ssedAq 0] siaxoene ajowal smoje zz's 1OSAN
T 1 2-1-2¢ lbsAw J18sn ON 1OSAN(W) 8¥T0-0002-3AD 0TS
oene (1op 10p) e eIA uondaloid piomssed ay) ssedAq 0] s1asn
SMO|[e UYdIyM ‘STdN Jorensiuiwpe 0] Ssadde 1ousal Aadolid 10u saop Jauueds MIoMaN 00/ SIXY
JETNEISRVE gk lolq
(449 ¢-2-21-¢ ON YJ0M}aN SIXY ¥¥T0-0002-IAD 90TS
74N & eIA Buixapul 10) SUOND3||02 BIep Buniwgnsal Ajpajeadal
AQ 921AIBS JO [eIUSP B 3Sned 0] Siaydeye a10Wal SMOoj[e pJezip\ uoneinbijuo) enoads alre|ly ayl
en
€9 1 pdny ON-08ds aure|v(w) TS00-0002-IAD SOTS
“oene quljwAs e eia sabajiaud ureb 01 s1asn [e20] mojje spurwwod sidyw pue sid arepaxiun
29 ‘619 T-2-21-¢ ON alepM\Xiun 6200-0002-dAD V0TS
joene YuljwAs e eiA sabiajinld ureb 0] S1asn [e20] SMOJ[e IBAIBS d1 41 MaIAapeISE)D
MBIA
129 ‘619 T-2-21-¢ ONPpeISe) Puddsy GT00-000¢-IAD E€0TS
g 3 duw 18d sse|D la s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

141

(ebed 1xau uo panunuod)

"slapeay ay) Jo yibus| syl uey) Ssa sl
plal yibus| asoym siayoed pawiojfew eIA 82IAISS JO [eIUSP B aSNed 0] Sigydele a10Wal SMojle SO9g

T ¢ T-2-0T-¢ jBunau 18N ON S0O9d 6/2¢0-000¢-IND 8TTS
"1sanbal pawuoy
-[eW e BIA 92IAISS JO [eIUSP B 8SNed 0] SiaydoeNe aloWal SMOj[e Janlas AXold NASI iNIM WAV auL

229 ¢-¢-¢l-¢ ON SMOPUIM 2920-0002-dND LTTS
‘Aljigqelauna ,Jusuodwo) apIS-1aAIaS M3IA YUIT, SUl BYe ‘SpURLIWOI 81NJ3Xa 10 9IIAISS JO
[elUSP B 8SNeI 0] S1I9SN SMO|[e O'T ASPJalU| [eNnSIA LOSOUIDIN Ul 77 |IPISSMAP Y1 Ul MOJIBA0 Jaing

€9 T-T-2-¢ pdny ON SMOPUIAM 0920-0002-IAD 9TTS
"Hod dIANS 8ay) 01 18x0ed
dan Yyi1bua| 019z & eIA 92IAISS JO [RIUSP B 3SNeI 0] SISy de)e 310Wal SMOo|[e abpliq ulie\ ednneN ayl

1a1noy eonnepn

T ¢ T-2-0T-¢ 1|unau ONSYIOMIBN [9UON T¢Z20-000¢-IND STTS
'sa|l} Arenigue Alipow 0}
SIS [@20] SMOJ[e YdIym ‘syuljwAs smojjol (\1%3]d) Jabeury asuadl] xa|4 uns ul welboud 11| ayL

29 ‘619 T-2-¢T-2 ON SUe|jos 0TZ0-0002-IND VTTS
"yaJeasyy 01 sia1aweded ul () Syomjoeq yum aweu aj1) ayl
Buisojoua Ag sajl} Areligie peal 0] Siaydene ajowal Smoje yareasiy welboud 199 (Biqy/ay) Bipiy ayL

€9 v-1-2-C pdny ON Bipy(w) 80zZ0-000Z2-3IAD ETTS
‘puBWIWOD] 39 Buoj e BIA
SS929® 1004 UIeh 0] SIayoeNe 310Wal SMO|R I9AISS (OM J9|NPaydSIeIS 321OJeIS Ul MOJJISA0 Jayng

T ¢ 1o 1-1-2-2 pdny ON aooteis(w) S/T0-0002-3AD ZTIS
Yoene
(10p 10p) e eIA S9|I} Areigie peal 0] SIayJele S10Wal SMO|[e JISAISS gaM J3|Npaydsiels adljolels

2¢9 Z2-¢-¢1-2 ON aojoeIs(w) +/.10-0002-3IAD TTIS

g 3 duw 18d sse|D la s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

142

(ebed 1xau uo panunuod)

'sisanbal (buid) oyose dINDI
POZISISAO0 BIA 82IAISS JO [BIUSP B 8SNED 0} SI9ydene ajowal SMo|fe J18InoJ 1Sd H-022E uewle) ayL

119 ¥-¢-0T-¢ ON uewAed 8T¥0-000Z-IAD LZTS
"Ja1awesed podalaus
3] BIA S3|(elieA [elUSLLIUOIIAUS Urelqo 0] Siayaene ajowal smojje 1duas 9D [rewiIo4 S1yBupn e
€9 T pdny ON [reywio4(w) TT¥0-0002-3IAD 92TS
‘Aligelaulna
74N Ul eled UOISUSIXT PauWlLolelN 9yl BYe ‘Suoisualxa 3|l Jo Jaquinu abie| ® urejuod 0] sieadde
1eUl 19N Xajdwod ‘Buo| e BIA 921AISS JO [RIUSP B aSned 0] Slaydoene ajowal Moje 0'S pue o't Sl
€9 ¢-T-1-¢ pdny ON SMOPUIN 80%0-0002-IAD SZTS
19x0ed asuodsal SNQ paw.loy
-lew e BIA SpUBWILLOI Arelligie 81Nn2axa 0] SI9yJele 810Wal SMO|[e JIUSIuY 1ydo ul MOJJUSA0 Jajing
T-T-9-¢ jusnpue 19N ON Jlusnuy(w) Go0-0002-IAD ¥2TS
"JUNOJJE [lRWS S,JaSN B SS329 0] JayJe)e 3)0Wal B SMO|[e YdIym
‘S7YN UOISSaS Jasn ul Sialjnuapl a|ge1dipald Sepoaua alem)jos JUNOIJ. [lews paseq-gam TdNINT ayL
€9 T pdny ON SMOPUIN /6E£0-0002-IAD €CTS
‘sabo|inLd 1004 ureb 01 SJ19SN [B20] SMO|[e G S01aQJaY Ul NSY Ul MOJJBA0 Jayng
9 T-T-G-¢ ON Ggsosaquad(w) Z6£0-0002-IAD 2ZTS
‘saba|inLd 1001 ureb 0] siaxoeNe 810Wal SMOJ[e G S0JagJa) Ul pysh| Ul MOJJISA0 Jajng
9 T-T-G-¢ ON Ggsosaquad(w) T6E0-0002-IAD TZTS
‘Sjuana pardAiouaun 1sod pue uoneonuayine yeam ayl ssedAq 01 Jaxoene
2]0Wal B SMO|[e YdIym ‘pajqeus sI Jaljjes pue £z'0'z ded3)d| 3D piomiaN ul ainea) buibbngap v
1% pdny 18N ON SMOPUINM 0SE€0-0002-IAD 0ZTS
"Ja)ewesed
A9p- Buoj e eIA sabajiald 1001 ureb 01 S19SN [820] SMOJ[R / SR|0S Ul J9AISS X UNSX Ul MOJLISAO Jajing
9 T-1-S-C TTX J9sn ON sejos /€€0-000¢-IAD 6TTS
du 1@ sse|D g s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

143

"3|qeleA [eluswuolInud

AV 1dSIa Buoj e eia sabajiaud ureb 01 Sasn [20] SMO|e XNUIT U0 pnsapy 3AM Ul MO|LIDA0 Jayng
99 1-2-€-¢ ON 3ax(w) 09¥0-0002-IAD 0ETS

"0009 Mod 01 1u8s s 1ey1 130ed 4O 1 pawloyew

® Ul anjeA 1a1unod anebau e eIA 92IAISS JO [eIUSP B 9SNed 0] 1asn B SMO|le Q' pue X'€'S 989ai4X

T ¢ 2-1-2¢ TIX 18N ON 989ai4X(W) €S+0-0002-IND 62TS
"yoene (10p 10p)
e RIA S9|I] Aresligie SS929k 0] Sigyorelle 910Wal SMO|[e Jallies pue Z'T Jaio|dx3 aunyQ S19npoideisin
[443) 22212 ON SMOPUIM 9E7#0-0002-IAD 8ZTS
g 3 duw 1@ sse|D g s S UInA a N

‘(panunuod) pajuawajdwi S1010818p 2110ads JO 1SIT TV 3|qeL

144

(ebed 1xau uo panunuo?)

"JaAI3S gam e 0] SN Buo| Ajswalxa Buipuas uo paseq syoene 1o 10193]1ap JLBUID

T ¢ 1-1-2-2 pdny 18N ON TINONOT-dS3 21D
‘y1Bua] uread e 1SN0 SI eyl paAladal si1axded dIADI Ue uaym lse ue sajelaualb 1ey) 1019919Q
T € -¢-0T-¢ laulau 1SN ON dNDIDNOT-dS3 TT9D
‘PIoYysaIy) urenad e uey) Jabuoj si Anus Jasn e ul pjall SOOI syl Usym Laje ue aleiauas)
T ¢ T-T-9-¢ uableissAis oN SOOd99NOT1-dS3 019D
"SYJeNe MOJJISA0 JajiNg paseq-aweulsoy 10} 1019319
T T T-T-9-¢ lau 1N ON OAdNIFINVYNLED-dS3 69
'sia10BIReyd pPI[feAuUl SUMRIU0I Teyl 1o Buo| 001 SI eyl PaAIadal SI pUBLLLLOD d] - Uk Usym Li3[e Ue alelauss)
T v T-T-¢-¢ pdy J19sn ON MOT14d3INO-AIND-d1d4-dS3 89
‘pallIpow SI 3|1} paJjoliuow e uaym s1abbuy pue Aibaiul a1 Sioluow eyl 1010a19d
e/u uiey sAssji4 oN ALIID3LNI-TNE-dST 19D
‘y16ua| uread e uey) Jobuoj SI a|geleA JUSLUOIIAUS Aue USUM 1i9[e Ue a1elauss
T 9 T-¢-¢€-¢ uloxerelSsAs oN N3T-AN3I-dS3T 99
"JusWIaINSEaW 8yl ul papnjoul adAl yoea Jo Sjuawa|d Jo Jaguinu ay) suodal os|e]| “Je) 0S Uaas
S9|geLIeA JUSWUOIIAUS pue Sluawnbire puewwod Jo yibua| abelaae pue wnwixew suodal pue Ss109||0D
S 9¢ e/u uIoXPIeISSAS SOA VIVA-ANT-9YV-123T10D-dS3 SO
"100Q Wa1SAS ay1 awn A1ans abessaw e a1elauan)
T T e/u uloXprelssAis oN 1009-dS3 9
"SMOJJISA0 J13JINg pPaskq-1dN 1ol pue SN duI0ads uo paseq syoene 10} 1010319 JIBUI9)
¢ 0oy e/u pdny 1SN ON STdNAva-dsd €9
"a19S 10 AINS ‘O|qellIM-PlIOM SBW0I3(3|l} PAUMO-100] B UBYM 1I3[e Uk 31eiaua)
vy 2 e/u sin sAs9|l4 ON 3714-100Y-3d0oINAvga-dS3 29
‘y1Bua| urenad e uey) J1abuoj siJuawnbire puewWOd Aue Usym LIgJe ue alelaus9)
T ¢ T-T-G-¢ uley 18sn ON NIT-SOHV-dS3I 19
g 3 dw 8@ sse|D g AS S a N

‘pajuawa|dwi s1010319p 218U JO 1S :Z'V 9|geL

145

(ebed 1xau uo panunuoo)

"uoseal Aue 1o} passadoe s A1010a41p Arejodwal e Ul YUIjWAS e Usym LIs[e Ue a1eiauas)

T-¢-¢1-¢
T ¢ ‘G-T-.-C uiey sAss|i4 ON ANITANAS-dNL-dST TZ9O
‘uoseal Aue 10} paddoip si19x2ed 491 Bulwosul ue uaym si1abbii 1eyl 1010919p v
T 1 e/u 1ounareissAis oN S13IMOVd-A3addOdA-dO1-dS3 029
Ul 21|0qWIAS B SI pue SISIXa Apealfe 9l
3} UBYM ‘Sal1010alIp 3|qellIM-PlIOM WS apisul Buneald o Bunum loy sajiy uado 01 sidwane 109918Qq
1-2-21-¢ SISEIE!
T ¢ T¢9 ‘S-1-/-C uiaX ‘ddy oN NadO-INITNAS-dST 619
‘A1010a.1p dlgnd e
Ul juiwiAs e si ey (Jjes waisAs ()19auuo0d ayl Buisn) 19X20S XINN € 01 Bundauuod Je sidwane 19918Q
T ¢ 129 §T-.C uidy sAsali4 ON LOINNOD-MNITNAS-dST 81D
*A1010841p 211gnd & ul YuljwAs
e ybnoiyl o) e Jo (jreo waisAs (Jumoyd ayl Buisn) dnoub 1o Jsumo ayy Buibueysd 1e sidwane 19919Q
sAsal4
T ¢ 129 S-T-L-¢ uiay ‘ddy oN NMOHO-INITNAS-dST LT19D
*A10193.1p 211gnd e ul
MuljwAs e ybnoayl aji e Jo (Jrea waisAs ()powyd ayr buisn) suoissiwiad ayy buibueyd 1e sidwane 19918
sAs9|i4
T ¢ 1¢9 G-1-,.-¢ uiaX ‘ddy oN AOINHODMNITNAS-dS3 919
‘|rewpuas 0] 1USS SPUBWIWOD 41 A'S UO Syoeie MOS0 Jayng 1e sidwane 19918
T ¢ T1-1-¢¢ [rewpuss 1SN ON MOT1ddINO-AIND-dLINS-dST STO
"UMOP SINYS Wa1sAs ayl awi Alons abessaw e ajelauas
T § e/u ulepreISsAis oN NMOdLNHS-dS3 V19
"'SURIS 11NN pue SYX ‘NI ‘Sueds NAS ‘sueas ||ny Buipnjoul ‘Buiuueds uod 491 Jo sadAluaiayia
91eISSAS
6 TST e/u JBuldu 19N S8A NVOS1d0d-dS3 €19
g 3 dw 18@ sse|D g us S a N

‘(panunuod) pajuswa|dwi si019919p duBuab JO 1SI :Z2'V 9|geL

146

dwane mojaAo Jayng e Jo ublis e Ajjensn si yaiym ‘1sanbai diy ue ul siajoeieyd dON JO aduasald

€9 T-1-2-C pdny ON SdON-IdN-dS3 €29
'SJUSWINJ0P gam JO a2eds [ewJou ay) apIsINo SajI) SS9J29e 01 SN Ul /. 10 @SN
2-221-¢
€9 ‘e-1-2-2 pdny ON 10a10a-19N-ds3 229
g 3 dw 18@ sse|D g uAS S a N

‘(panunuod) pajuswa|dwi si019919p duBuab JO 1SI :Z2'V 9|geL

147

Appendix B: The ESP Library

The ESP libraryl{besp) was developed to provide a central wrapper around sev-
eral functions that can be useful for embedded detectors and programs that read their
messages. The functions in the library (except foreébp log() system call and the
esp _logf() function) are only available to user-level processes because a library cannot
be linked against the Unix kernel.

The following functions exist in the current version of the ESP library:

esplog: This is the direct interface to thesp _log system call. It takes a string pointer

as argument and writes it to the message buffer.

esplogf: Interface to theesp _log system call that knows how to handle format strings

so that variable data can be written to the message buffer.

espopen: Opens thddev/esplog device for reading, so that a process can read mes-

sages produced by detectors.
espclose: Closes thddev/esplog device.

espgets: Reads the next message from thev/esplog device. In the current im-
plementation, detector messages are produced as lines of ASCII text. However this

interpretation may change in the future.

espmatch_char: This utility function performs a character-by-character comparison against
a pattern. Itis used by several detectors to perform comparisons needed to detect spe-

cific buffer overflow attacks.

esp.count_char: Counts how many times a specific character occurs in a string. It is used

mostly throughesp _count _nops() .

esp.count_.nops: Counts the number of times the code for a NOP operation occurs in a
string. NOP codes almost invariable occur in strings that are intended to cause a
buffer overflow. Their occurrence is used as a strong heuristic for detecting some

attacks.

esplongestchar_seq: Returns the length of the longest contiguous sequence of a specific

character that appears in a string.

148

espstrcasestr: Similar to the standarsirstr() function, it looks for the occurrence of

a string inside another, but it does the search in a case-insensitive manner.

espstrhead: It returns a buffer containing the “head” of a given string, up to a length

specified by the user.

espcheck path_level: Determines if a given path will try to go past the root directory

when considered relative to a specific directory.

esppath_level: Counts the level (starting with zero for the root directory) at which a given

path will end up when considered relative to a specific directory.

149

Appendix C: A Taxonomy of Software Vulnerabilities

The taxonomy of software vulnerabilities proposed by Krsul [78] is used in this disser-
tation as one mechanism for classifying detectors and attacks. The categories used in this
dissertation are listed in Table C.1 for reference. The classes Iist&alics correspond
to classes added to this taxonomy during the development of the ESP prototype, and are
described in Section 4.13.6. A full listing and description of the taxonomy is outside the

scope of this document but can be found in its original source.

Table C.1: Categories from the Krsul taxonomy used in this dissertation.

(1) Design faults
(2) Environmental assumptions
(2-1) Running (2-1-3) Environment
program

(2-1-3-1) isystem() safe

(2-1-4) User running (2-1-4-1) user is root or administrator
the program
(2-2) User input (2-2-1) Content (2-2-1-1) is at most x
(2-2-1-3) matches regular expression
(2-2-1-4) is free of shell metacharacters
(2-3) Environment (2-3-2) Content (2-3-2-1) length is at most x
variable
(2-3-2-3) matches regular expression

(2-4) Network (2-4-1-1) is at most x

stream

(2-4-1) Content

(2-4-1-4)matches a regular expression

(2-5) Command

line parameters

(2-6) System
library
(2-7) File

(2-8) Directory

(2-9) Program
string

(2-10) Network
IP packets

(2-4-2) Socket
(2-5-1) Content

(2-6-1) Return

(2-7-1) Name

(2-7-2) Content
(2-8-1) Name
(2-9-1) Content

(2-10-1) Source
address

(2-4-2-1)is the same object as x
(2-5-1-1) length is at most x

(2-6-1-1) length is at most x

(2-7-1-2) is a valid file name
(2-7-1-4) is the same object as x
(2-7-1-5) is final
(2-7-1-6)length is at most x
(2-7-2-1) length is at most x
(2-7-2-3) is a known program
(2-7-2-5) is of a known type
(2-8-1-1) length is at least x
(2-9-1-3) is free of shell metacharacters

(2-10-1-1)is different than destination address

(continued on next page)

150

Table C.1: Categories from the Krsul taxonomy used in this dissertation (continued).

(2-10-2) Data
segment

(2-10-4)TCP seq.

number
(2-11) Directory, (2-11-1) Dir. name,
running running program
program privileges, name of

user that ran
the program

(2-12) File, (2-12-1) File perms.,
running running program
program privileges, user that

ran the program

(2-12-2) File name,
running program
privileges, user that
ran the program

(3) Coding faults
(4) Configuration errors

(2-10-2-1) length is at least x

(2-10-2-2)is a proper fragment

(2-10-2-3) corresponds to a fully established
connection

(2-10-2-4)length is at most x

(2-10-4-1)is in proper sequence

(2-11-1-1) is in valid user space for the user that
invoked the program.

(2-11-1-3) user that invoked the program can
create files in the directory

(2-12-1-1) User that invoked the program can
read the file

(2-12-1-2) User that invoked the program can
write to the file
(2-12-2-1) is a valid temporary file

(2-12-2-2) is in valid user space for the user that
invoked the program.

VITA

151

VITA

Diego Zamboni was born on December 3, 1970 in Corrientes, Argentina. He received
his Bachelor’'s Degree in Computer Engineering from the National Autonomous University
of Mexico (UNAM) in 1995, and his Masters Degree in Computer Science from Purdue
University in 1998. While at UNAM, he was in charge of the security for the Unix ma-
chines at the Supercomputing Department. He also established the University’'s Computer
Security Area, one of the first Computer Security Incident Response Teams in Mexico. In
July of 2001, he was awarded the first Josef Raviv Memorial Postdoctoral Fellowship from

IBM.

