
USING INTERNAL SENSORS FOR
COMPUTER INTRUSION DETECTION

A Thesis
Submitted to the Faculty of

Purdue University

by Diego Zamboni
CERIAS TR 2001-42

Center for Education and Research in
Information Assurance and Security,

Purdue University
August 2001

USING INTERNAL SENSORS FOR COMPUTER INTRUSION DETECTION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Diego Zamboni

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2001

ii

To my parents for giving me life,

and to Susana for sharing it with me.

iii

ACKNOWLEDGMENTS

As usual, a large number of people were very important for the completion of this thesis

work, and I would like to acknowledge at least some of them.

First the official acknowledgments: Portions of the research contributing to this dis-

sertation were supported by the various sponsors of CERIAS, and my stay at Purdue was

partially funded by a Fulbright/Conacyt fellowship. Their support is gratefully acknowl-

edged.

I would like to thank my advisor, Eugene Spafford. He received me with open arms

from my first day at Purdue, and provided continuous guidance and support throughout my

stay here. For that I am very, very grateful.

I would like to acknowledge the other members of my Ph.D. committee: Stephanie For-

rest, Mikhail Atallah, Jens Palsberg and Carla Brodley. They provided invaluable feedback

and advice for my work and for this dissertation.

Many people contributed significantly to my work, and my deepest gratitude goes to

all of them. Susana Soriano, Benjamin Kuperman, Thomas Daniels, Florian Kerschbaum,

Rajeev Gopalakrishna and Jim Early provided me with many hours of discussion, continu-

ously questioned my assumptions, and led to many new ideas. The original ideas for how

internal sensors would be implemented evolved from discussions with Ben Kuperman, and

he also came up with the name “ESP”. Florian Kerschbaum poured enormous amounts of

work into implementing and testing detectors, and Jim Early implemented the file integrity

detector. Angel Soriano guided me through the statistical analysis of the experimental

results, and suggested multiple avenues for future research. The staff at the Statistical Con-

sulting Service at Purdue also provided invaluable guidance in the analysis of data. Other

iv

students at CERIAS provided support for my work: Sofie Nystrom (who let me use her

office), Kevin Du, Hoi Chang, Chapman Flack, Chris Telfer, and many others.

Substantial administrative, technical and logistic support were needed for the comple-

tion of my work. The system administrators at CERIAS, Susana Soriano and Vince Koser,

always maintained our computers up and running and kept up with my continuous requests

and questions, even at times when what they really wanted to do was remove my account

and get rid of me. All the administrative personnel at CERIAS, including Mary Jo Maslin,

Lori Floyd, Paula Cheatham, Steve Hare and Andra Boehning, always gave me their sup-

port. In particular, I would like to thank Marlene Walls, who tirelessly stayed on top of

things at CERIAS to make sure everything was going as it should. Without her, my life

(and the scheduling for seeing my advisor) would have been infinitely more complicated.

Before and throughout my stay at Purdue there were people who contributed to my ca-

reer by inspiring, supporting, and challenging me. These include Gerardo Cisneros (who

may not know it, but he was my main inspiration for pursuing a Ph.D.); my friends Rey-

naldo Roel, Carlos González, Claudia Fajardo, Agustı́n and Adriana Casimiro, Luis and

Claudia Graf, Luis and Carmen Teresa Martı́nez and Eduardo Asbun, all of whom gave

me so much support and friendship; Ivan Krsul, Christoph Schuba, Tanya Mastin, Kathy

Price, Keith Watson and Robin Sundaram, who gave me a great welcome to the COAST

laboratory and helped me through my first years at Purdue. Thank you all.

Who I am is a result of my formation, and for that I have to thank my family. My

parents, Laura Zamboni and Gilberto De La Rosa, and my sisters, Ana, Daniela and Inés,

have been an inexhaustible source of inspiration, support, advice, and happiness.

And finally, but most importantly, I would like to thank my best friend and wife, Susana

Soriano. She lifted me at times when I thought I could not keep going, and her support and

care made it possible for me to start and finish this endeavor. She listened patiently to my

ideas and tolerated me being locked up in my office 20 hours a day (although she always

found ways of spending some time together!), and on top of that, she managed to expertly

proofread my dissertation. Susana: you are the love of my life, and words cannot express

how much I need to thank you.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF DEFINITIONS . xiii

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 Background and problem statement. 1

1.2 Basic concepts. 2

1.2.1 Intrusion detection. 2

1.2.2 Desirable characteristics of an intrusion detection system. 3

1.3 Problems with existing intrusion detection systems. 5

1.4 Thesis statement. 5

1.5 Document organization. 6

2 RELATED WORK AND ARCHITECTURES FOR INTRUSION DETECTION 7

2.1 Data collection architectures. 7

2.1.1 Data collection structure: centralized and distributed. 10

2.1.2 Data collection mechanisms: direct and indirect monitoring. . . . 11

2.1.3 Data collection mechanisms: host-based and network-based. . . 14

2.1.4 Data collection mechanisms: external and internal sensors. . . . 16

2.2 Data analysis architectures. 21

2.3 Experiences in building a distributed intrusion detection system. 22

2.4 Comments about intrusion detection architectures. 25

2.5 Related work. 26

vi

Page

3 AN ARCHITECTURE FOR INTRUSION DETECTION BASED ON INTER-
NAL SENSORS . 29

3.1 Embedded detectors. 29

3.1.1 How embedded detectors work. 30

3.1.2 Relationship between internal sensors and embedded detectors. . 31

3.1.3 Stateless and stateful detectors. 33

3.1.4 Strengths and weaknesses of embedded detectors. 34

3.2 The ESP architecture. 35

3.2.1 Internal sensors and embedded detectors. 35

3.2.2 Per-host external sensors. 35

3.2.3 Network-wide external sensors. 35

3.3 Distinguishing characteristics of the ESP architecture. 36

3.3.1 Types of data observed. 36

3.3.2 Tighter coupling between event collection and event analysis. . . 37

3.3.3 Intrusion detection at the application and operating system level. 38

3.3.4 Size of the intrusion detection system. 38

3.3.5 Timeliness of detection. 39

3.3.6 Impact on the host. 39

3.3.7 Resistance to attack. 39

4 THE ESP IMPLEMENTATION . 41

4.1 Purpose of the implementation. 41

4.2 Specific and generic detectors. 41

4.3 Sources of information. 42

4.4 Implementation platform. 43

4.5 Reporting mechanism. 44

4.6 Methodology for implementation of detectors. 46

4.7 Applicability of CVE entries. 47

4.8 Design and implementation considerations for detectors. 48

vii

Page

4.9 Naming, testing and measuring detectors. 49

4.10 Relationships between detectors. 50

4.11 Recording information about sensors and detectors. 51

4.12 Case studies. 53

4.12.1 Embedded detectors for network-based attacks. 53

4.12.2 Embedded detectors for sendmail attacks. 60

4.13 Detectors implemented. 65

4.13.1 By vulnerable platform or program. 65

4.13.2 By implementation directory. 67

4.13.3 By size. 67

4.13.4 By type . 70

4.13.5 By data sources used. 72

4.13.6 By vulnerability type . 74

4.13.7 By detection and implementation rates. 77

4.14 Auxiliary components. 77

4.15 Comments about the ESP implementation. 80

5 TESTING THE ESP IMPLEMENTATION 82

5.1 Performance testing. 82

5.1.1 Test design and methodology. 82

5.1.2 Results of the NetPerf test. 85

5.1.3 Results of the httpload test . 88

5.1.4 Comparison and comments about the tests. 88

5.2 Detection testing. 93

5.2.1 Test design and methodology. 93

5.2.2 Results from the detection test. 97

5.2.3 Comments about the detection test. 109

6 CONCLUSIONS, SUMMARY AND FUTURE WORK. 112

6.1 Conclusions . 112

viii

Page

6.2 Summary of main contributions. 114

6.3 Future work . 115

LIST OF REFERENCES . 118

APPENDICES

Appendix A: Detectors and Sensors Implemented. 129

Appendix B: The ESP Library. 147

Appendix C: A Taxonomy of Software Vulnerabilities. 149

VITA . 151

ix

LIST OF TABLES

Table Page

2.1 Classification of some existing intrusion detection systems by their data
analysis and data collection structure. 8

2.2 Classification of some existing intrusion detection systems by their data
collection mechanisms and data analysis structure. 9

2.3 Advantages and disadvantages of external sensors. 18

2.4 Advantages and disadvantages of internal sensors. 19

2.5 Comparison between centralized and distributed intrusion detection systems 23

4.1 Summary of network-related detectors implemented during the study phase 55

4.2 Summary of sendmail-related detectors implemented during the study phase 61

4.3 Information about the implementation of auxiliary mechanisms. 79

5.1 Summary of the parameters for the performance tests. 84

5.2 Statistics and analysis results for data from the NetPerf experiment. . . . 86

5.3 Statistics and analysis results for data from the httpload experiment . . . 90

5.4 Number of attacks in each category for the detection tests. 97

5.5 Distribution of original ESP detectors that responded to the attacks in the
detection test. 99

5.6 Attacks detected by the original ESP detectors, by Krsul classification. . 100

5.7 Changes made during the detection test of the ESP implementation. . . . 102

5.8 Distribution of ESP detectors that responded to attacks after the changes
made during the detection test.. 103

5.9 Attacks detected by the final ESP detectors, by Krsul classification. . . . 104

5.10 Confidence intervals for the detection rates of ESP detectors. 111

A.1 List of specific detectors implemented. 130

x

Table Page

A.2 List of generic detectors implemented. 144

C.1 Categories from the Krsul taxonomy used in this dissertation. 149

xi

LIST OF FIGURES

Figure Page

3.1 Example of embedded detector on vulnerable code. 30

3.2 Relationships and differences between internal sensors and embedded de-
tectors . 32

3.3 Example of embedded detector on non-vulnerable code. 34

4.1 Example of the XML representation of detector information. 54

4.2 Distribution of specific detectors by vulnerable platform or program. . . 66

4.3 Distribution of detectors by implementation directory. 68

4.4 Distribution of detector sizes. 69

4.5 Distribution of number of contiguous code blocks per detector. 70

4.6 Graph of detector sizes by combination of the ESAM and BOCAM metrics 71

4.7 Distribution of detectors by type. 72

4.8 Distribution of detectors by type of data sources used. 73

4.9 Distribution of detectors by type of vulnerability. 75

4.10 Distribution of detectors by coverage. 78

4.11 Distribution of detectors by number of detectors they implement. 78

5.1 General setup for the performance tests of the ESP implementation. . . . 83

5.2 CPU utilization measurements from the NetPerf experiment. 85

5.3 Difference in mean CPU utilization between the system with and without
detectors in the NetPerf experiment. 87

5.4 CPU utilization measurements from the httpload experiment. 89

5.5 Difference in mean CPU utilization between the system with and without
detectors in the httpload experiment 91

5.6 Attacks by category for each batch of the detection test. 98

xii

Figure Page

5.7 Total number of attacks that would have been detected by the original de-
tectors and by the detectors after the changes. 99

5.8 Distribution of attacks in the detection test by Krsul categories. 105

5.9 Percentages of attacks detected (by Krsul category) by the original and final
detectors, plotted asx, y coordinates. 106

5.10 Percentage of attacks detected by each detector, before and after the changes
made during the detection test. 107

5.11 Percentage of attacks detected by each detector before and after the changes
made during the detection test, plotted asx, y coordinates. 108

5.12 Comparison of the distribution of vulnerability types in the ESP detectors
and in the set of applicable attacks found during the detection test. 110

xiii

LIST OF DEFINITIONS

Definition Page

1.1 Intrusion . 2

1.2 Intrusion detection. 2

1.3 Intrusion detection system. 3

2.1 Monitored component. 10

2.2 Centralized data collection. 10

2.3 Distributed data collection. 10

2.4 Direct monitoring . 11

2.5 Indirect monitoring . 12

2.6 Host-based data collection. 14

2.7 Network-based data collection. 14

2.8 External sensor. 16

2.9 Internal sensor. 17

2.10 Centralized intrusion detection system. 21

2.11 Distributed intrusion detection system. 21

3.1 Embedded detector. 29

3.2 Stateless embedded detector. 33

3.3 Stateful embedded detector. 33

4.1 Specific detector. 41

4.2 Generic detector. 41

4.3 Coverage of a detector. 50

xiv

ABSTRACT

Zamboni, Diego. Ph.D., Purdue University, August, 2001. Using Internal Sensors for
Computer Intrusion Detection. Major Professor: Eugene H. Spafford.

This dissertation introduces the concept of using internal sensors to perform intrusion

detection in computer systems. It shows its practical feasibility and discusses its character-

istics and related design and implementation issues.

We introduce a classification of data collection mechanisms for intrusion detection sys-

tems. At a conceptual level, these mechanisms are classified as direct and indirect monitor-

ing. At a practical level, direct monitoring can be implemented using external or internal

sensors. Internal sensors provide advantages with respect to reliability, completeness, time-

liness and volume of data, in addition to efficiency and resistance against attacks.

We introduce an architecture called ESP as a framework for building intrusion detection

systems based on internal sensors. We describe in detail a prototype implementation based

on the ESP architecture and introduce the concept of embedded detectors as a mechanism

for localized data reduction.

We show that it is possible to build both specific (specialized for a certain intrusion)

and generic (able to detect different types of intrusions) detectors. Furthermore, we provide

information about the types of data and places of implementation that are most effective in

detecting different types of attacks.

Finally, performance testing of the ESP implementation shows the impact that embed-

ded detectors can have on a computer system. Detection testing shows that embedded

detectors have the capability of detecting a significant percentage of new attacks.

1

1. INTRODUCTION

It is feasible to perform computer intrusion detection at the host level for both known and

new attacks using internal sensors and embedded detectors with reasonable CPU and size

overhead. The present document discusses this assertion in detail, and describes the work

done to show its validity.

1.1 Background and problem statement

The field of intrusion detection has received increasing attention in recent years. One

reason is the explosive growth of the Internet and the large number of networked systems

that exist in all types of organizations. The increased number of networked machines has

led to a rise in unauthorized activity [20], not only from external attackers, but also from

internal sources such as disgruntled employees and people abusing their privileges for per-

sonal gain [113].

In the last few years, a number of intrusion detection systems have been developed both

in the commercial and academic sectors. These systems use various approaches to detect

unauthorized activity and have given us some insight into the problems that still have to

be solved before we can have intrusion detection systems that are useful and reliable in

production settings for detecting a wide range of intrusions.

Most of the existing intrusion detection systems have used central data analysis en-

gines [e.g. 32, 86] or per-host data collection and analysis components [e.g. 60, 112] that

are implemented as separate processes running on one or more of the machines in a net-

work. In their design and implementation, all of these approaches are subject to a number

of problems that limit their scalability, reliability and resistance to attacks.

At CERIAS (Center for Education and Research in Information Assurance and Se-

curity) at Purdue University, we have developed a monitoring technique calledinternal

sensorsbased on source code instrumentation. This technique allows the close observation

2

of data and behavior in a program. It can also be used to implement intrusion detection sys-

tems that perform their task in near real-time, that are resistant to attacks and that impose a

reasonably low overhead in the hosts, both in terms of memory and CPU utilization.

This dissertation describes the concept of using internal sensors for building an intru-

sion detection framework at the host level, their characteristics and abilities, and experi-

mental results in an implementation.

1.2 Basic concepts

First, we introduce some basic concepts on which this dissertation is based.

1.2.1 Intrusion detection

Intrusion detection has been defined as “the problem of identifying individuals who are

using a computer system without authorization (i.e., ‘crackers’) and those who have legiti-

mate access to the system but are abusing their privileges (i.e., the ‘insider threat’)” [93].

We add to this definition the identification ofattemptsto use a computer system without

authorization or to abuse existing privileges. Therefore, our working definition ofintrusion

matches the one given by Heady et al. [59]:

WORKING DEFINITION 1.1: INTRUSION

Any set of actions that attempt to compromise the integrity, confidentiality, or avail-

ability of a computer resource.

This definition disregards the success or failure of those actions, so it also corresponds to

attacks against a computer system. In the rest of this dissertation we use the termsattack

andintrusion interchangeably.

The definition of intrusion results in our working definition of intrusion detection:

WORKING DEFINITION 1.2: INTRUSION DETECTION

The problem of identifying actions that attempt to compromise the integrity, confi-

dentiality, or availability of a computer resource.

The definition of the wordintrusion in an English dictionary [96] does not include the

concept of an insider abusing his or her privileges or attempting to do so. A more accurate

3

phrase to use isintrusion and insider abuse detection. In this document we use the term

intrusionto mean both intrusion and insider abuse.

WORKING DEFINITION 1.3: INTRUSION DETECTION SYSTEM

A computer system (possibly a combination of software and hardware) that attempts

to perform intrusion detection.

Most intrusion detection systems try to perform their task in real time [93]. However, there

are also intrusion detection systems that do not operate in real time, either because of the

nature of the analysis they perform [e.g. 76] or because they are geared for forensic analysis

(analysis of what has happened in the past on a system) [e.g. 48, 147].

The definition of an intrusion detection system does not include preventing the intrusion

from occurring, only detecting it and reporting it to an operator. There are some intrusion

detection systems [e.g. 25, 135] that try to react when they detect an unauthorized action.

This reaction usually includes trying to contain or stop the damage, for example, by termi-

nating a network connection.

Intrusion detection systems are usually classified as host-based or network-based [93].

Host-based systems base their decisions on information obtained from a single host (usu-

ally audit trails), while network-based systems obtain data by monitoring the traffic in the

network to which the hosts are connected.

1.2.2 Desirable characteristics of an intrusion detection system

The following characteristics are ideally desirable for an intrusion detection system

(based on the list provided by Crosbie and Spafford [34]):

1. It mustrun continuallywith minimal human supervision.

2. It must befault tolerant:

(a) The intrusion detection system must be able to recover from system crashes,

either accidental or caused by malicious activity.

(b) After a crash, the intrusion detection system must be able to recover its previous

state and resume its operation unaffected.

4

3. It mustresist subversion:

(a) There must be a significant difficulty for an attacker to disable or modify the

intrusion detection system.

(b) The intrusion detection system must be able to monitor itself and detect if it has

been modified by an attacker.

4. It must impose aminimal overheadon the systems where it runs to avoid interfering

with their normal operation.

5. It must beconfigurableto accurately implement the security policies of the systems

that are being monitored.

6. It must beeasy to deploy. This can be achieved through portability to different ar-

chitectures and operating systems, through simple installation mechanisms, and by

being easy to use and understand by the operator.

7. It must beadaptableto changes in system and user behavior over time. For example,

new applications being installed, users changing from one activity to another, or new

resources being available can cause changes in system use patterns.

8. It must beable to detect attacks:

(a) The intrusion detection system must not flag any legitimate activity as an attack

(false positives).

(b) The intrusion detection system must not fail to flag any real attacks as such

(false negatives). It must be difficult for an attacker to mask his actions to avoid

detection.

(c) The intrusion detection system must report intrusions as soon as possible after

they occur.

(d) The intrusion detection system must be general enough to detect different types

of attacks.

5

We will refer to these characteristics throughout this dissertation for description of dif-

ferent intrusion detection architectures and systems, including those developed for this dis-

sertation.

1.3 Problems with existing intrusion detection systems

Most existing intrusion detection systems (for example, those surveyed by Axelsson

[7], plus others [e.g. 9, 137]) suffer from at least two of the following problems:

First, the information used by the intrusion detection system is obtained from audit

trails or from packets on a network. Data has to traverse a longer path from its origin to

the intrusion detection system, and in the process can potentially be destroyed or modified

by an attacker. Furthermore, the intrusion detection system has to infer the behavior of the

system from the data collected, which can result in misinterpretations or missed events. We

refer to this as thefidelityproblem. It corresponds to a failure to properly address desirable

characteristic #8.

Second, the intrusion detection system continuously uses additional resources in the

system it is monitoring even when there are no intrusions occurring, because the compo-

nents of the intrusion detection system have to be running all the time. This is theresource

usageproblem and corresponds to a failure in addressing desirable characteristic #4.

Third, because the components of the intrusion detection system are implemented as

separate programs, they are susceptible to tampering. An intruder can potentially disable

or modify the programs running on a system, rendering the intrusion detection system

useless or unreliable. This is thereliability problem and corresponds to a failure to address

desirable characteristics #1, #2 and #3.

In this dissertation, we describe a mechanism that addresses all three of these problems

and has several other desirable characteristics.

1.4 Thesis statement

This dissertation describes the work done to show the validity of the following two

hypotheses:

6

1. It is possible to use internal sensors in a host to perform intrusion detection in a

way that addresses the fidelity, resource usage and reliability problems described in

Section 1.3.

2. Internal sensors can be used to detect both known and new attacks against a host.

In this context,intrusion detectionis used as defined in Section 1.2.1.Internal sensor

is a concept defined in Section 2.1.4.

1.5 Document organization

This dissertation follows: Chapter 1 introduces some basic concepts, the problems to

address, and the thesis statement. Chapter 2 presents a classification of the existing ar-

chitectures for the data collection and data analysis phases of intrusion detection systems,

and provides the motivation and justification for the work described in this dissertation. It

also presents related work. Chapter 3 describes the ESP architecture and its characteristics.

Chapter 4 describes the prototype implementation for an intrusion detection system based

on the ESP architecture, and the results of that implementation. Chapter 5 describes the

performance and detection tests that were done to evaluate the properties of the ESP imple-

mentation, and how they relate to the predicted properties described in Chapter 3. Finally,

Chapter 6 presents the conclusions, summarizes the contributions of this dissertation, and

discusses directions for future research.

7

2. RELATED WORK AND ARCHITECTURES FOR INTRUSION

DETECTION

Intrusion detection is conceptually—and in practice, in most cases—performed in two dis-

tinct phases: data collection and data analysis. Intrusion detection systems can be classified

according to how they are structured in each of those phases.

In this chapter, we describe the different structures that an intrusion detection system

can have in both data collection and data analysis and draw some conclusions that guide the

rest of this dissertation. We also mention related work as appropriate. Tables 2.2 and 2.1

summarize how different existing intrusion detection systems are classified according to

some of the architectures described in this chapter.

2.1 Data collection architectures

The performance of an intrusion detection system can only be as good in terms of de-

sirable characteristics #2, #3, #7, and #8 (see Section 1.2.2) as the data on which it bases its

decisions. For this reason, the way in which data is obtained is an important design decision

in the development of intrusion detection systems. If the data is acquired with a significant

delay, detection could be performed too late to be useful. If the data is incomplete, detec-

tion abilities could be degraded. If the data is incorrect (because of error or actions of an

intruder), the intrusion detection system could stop detecting certain intrusions and give its

users a false sense of security. Unfortunately, these problems have been identified in ex-

isting products. After examining the needs of different intrusion detection systems and the

data provided by different operating systems, Price concluded that “the audit data supplied

by conventional operating systems lack content useful for misuse detection.” [114, p. 107]

With the goal of better understanding the characteristics that make data collection

mechanisms suitable for intrusion detection, in this chapter we provide two conceptual

(centralized/distributed and direct/indirect) and two practical (host/network-based and ex-

8

Ta
bl

e
2.

1
C

la
ss

ifi
ca

tio
n

of
so

m
e

ex
is

tin
g

in
tr

us
io

n
de

te
ct

io
n

sy
st

em
s

ac
co

rd
in

g
to

th
e

da
ta

an
al

ys
is

st
ru

ct
ur

e
an

d
da

ta
co

lle
ct

io
n

st
ru

ct
ur

e
ar

ch
ite

ct
ur

es
de

sc
rib

ed
in

S
ec

tio
ns

2.
1.

1
an

d
2.

2.
D

at
a

an
al

ys
is

st
ru

ct
ur

e
C

en
tr

al
iz

ed
(7

5%
)

D
is

tr
ib

ut
ed

(2
5%

)

Datacollectionstructure

C
en

tr
al

iz
ed

(4
7%

)

A
C

M
E

![
14

],
A

LV
A

[9
0]

,A
S

A
X

[5
6]

,
A

pp
S

hi
el

d
[1

24
],

B
la

ck
IC

E
S

en
tr

y
[9

5]
,B

ro
[1

07
],

C
E

R
N

N
S

M
[9

1]
,C

ap
tIO

[1
5]

,C
om

pW
at

ch
[4

2]
,

D
ef

en
se

W
or

x
[1

29
],

H
ay

st
ac

k
[1

32
],

H
yp

er
vi

ew
[3

9]
,I

D
IO

T
[7

9]
,J

an
us

[5
4]

,L
A

N
gu

ar
d,

LA
N

gu
ar

d
S

E
LM

[8
2]

,L
ID

S
[6

8]
,M

ID
A

S
[1

28
],

N
ID

[2
8]

,N
S

M
[6

0]
,N

et
w

or
k

S
ec

ur
ity

A
ge

nt
[1

49
],

O
pe

nS
no

rt
S

en
so

r
[1

36
],

O
pe

nW
al

l
K

er
ne

lp
at

ch
fo

r
Li

nu
x

[1
05

],
P

O
LY

C
E

N
T

E
R

[4
1]

,
P

si
on

ic
H

os
tS

en
tr

y
[1

16
],

P
si

on
ic

Lo
gc

he
ck

/L
og

S
en

tr
y

[1
16

],
P

si
on

ic
P

or
tS

en
tr

y
[1

16
],

S
ec

ur
eN

et
P

ro
[8

8]
,S

no
rt

[1
21

],
T-

si
gh

t[
44

],
T

rip
w

ire
[7

6]
,U

S
TA

T
[7

0]
,W

is
do

m
&

S
en

se
[1

50
],

al
er

t.s
h

fo
r

F
W

-1
[1

38
],

au
di

tG
U

A
R

D
[3

8]
,e

T
ru

st
ID

[2
7]

,p
H

[1
35

]

D
is

tr
ib

ut
ed

(5
3%

)

A
D

S
[1

18
],

A
ID

[1
34

],
C

ID
D

S
,C

M
D

S
[1

15
],

C
yb

er
C

op
M

on
ito

r
[1

10
],

C
yb

er
T

ra
ce

[1
23

],
C

yl
an

tS
ec

ur
e

[1
54

],
E

nt
er

ce
pt

[4
6]

,I
D

A
[6

],
ID

E
S

[8
6]

,I
nt

ru
de

r
A

le
rt

[1
48

],
K

an
e

S
ec

ur
ity

M
on

ito
r

[2
9]

,M
an

hu
nt

[1
19

],
N

A
D

IR
[6

3]
,

N
ID

E
S

[3
],

N
S

TA
T

[7
4]

,N
et

P
ro

w
le

r
[1

48
],

N
et

R
an

ge
r

[2
5]

,P
R

C
is

[8
4]

,S
ha

do
w

[1
00

],
U

N
IC

O
R

N
[2

2]
,e

T
ru

st
A

ud
it

[2
6]

A
A

F
ID

[1
37

],
A

F
J

[4
],

C
A

R
D

S
[1

56
],

C
S

M
[1

53
],

C
en

tr
ax

[5
3]

,D
ID

S
[1

33
],

D
P

E
M

[7
7]

,
D

ra
go

n
[4

5]
,E

M
E

R
A

LD
[1

12
],

F
or

m
at

G
ua

rd
[3

1]
,

G
rI

D
S

[1
39

],
H

P
ID

S
/9

00
0

[6
1]

,H
um

m
er

[5
1]

,
Ji

N
ao

[7
3]

,L
IS

Y
S

[6
4]

,N
F

R
[9

9]
,N

et
S

TA
T

[1
52

],
R

ea
lS

ec
ur

e
[7

1]
,S

to
rm

W
at

ch
[1

01
]

9

Ta
bl

e
2.

2
C

la
ss

ifi
ca

tio
n

of
so

m
e

ex
is

tin
g

in
tr

us
io

n
de

te
ct

io
n

sy
st

em
s

ac
co

rd
in

g
to

th
e

ar
ch

ite
ct

ur
es

th
ey

us
e

fo
r

th
ei

r
da

ta
co

lle
ct

io
n

m
ec

ha
ni

sm
s

an
d

th
ei

r
da

ta
an

al
ys

is
st

ru
ct

ur
e,

as
de

sc
rib

ed
in

S
ec

tio
ns

2.
1.

2,
2.

1.
3,

2.
1.

4
an

d
2.

2.
N

ot
e

th
at

th
e

as
si

gn
ed

pe
rc

en
ta

ge
s

fo
r

da
ta

co
lle

ct
io

n
m

ec
ha

ni
sm

s
do

no
ta

dd
to

10
0%

be
ca

us
e

so
m

e
in

tr
us

io
n

de
te

ct
io

n
sy

st
em

s
us

e
m

or
e

th
an

on
e

ty
pe

of
da

ta
co

lle
ct

io
n

m
ec

ha
ni

sm
.

D
at

a
an

al
ys

is
st

ru
ct

ur
e

C
en

tr
al

iz
ed

(7
5%

)
D

is
tr

ib
ut

ed
(2

5%
)

Datacollectionmechanisms

Indirect(85%)

N
et

w
or

k-
ba

se
d

(4
4%

)

A
C

M
E

![
14

],
B

la
ck

IC
E

S
en

tr
y

[9
5]

,B
ro

[1
07

],
C

E
R

N
N

S
M

[9
1]

,C
ID

D
S

,C
ap

tIO
[1

5]
,C

yb
er

C
op

M
on

ito
r

[1
10

],
C

yb
er

T
ra

ce
[1

23
],

D
ef

en
se

W
or

x
[1

29
],

LA
N

gu
ar

d,
LA

N
gu

ar
d

S
E

LM
[8

2]
,

M
an

hu
nt

[1
19

],
N

ID
[2

8]
,N

S
M

[6
0]

,
N

et
P

ro
w

le
r

[1
48

],
N

et
R

an
ge

r
[2

5]
,N

et
w

or
k

S
ec

ur
ity

A
ge

nt
[1

49
],

O
pe

nS
no

rt
S

en
so

r
[1

36
],

S
ec

ur
eN

et
P

ro
[8

8]
,S

ha
do

w
[1

00
],

S
no

rt
[1

21
],

T-
si

gh
t[

44
],

eT
ru

st
ID

[2
7]

A
A

F
ID

[1
37

],
A

F
J

[4
],

C
en

tr
ax

[5
3]

,D
ID

S
[1

33
],

D
ra

go
n

[4
5]

,E
M

E
R

A
LD

[1
12

],
G

rI
D

S
[1

39
],

H
um

m
er

[5
1]

,L
IS

Y
S

[6
4]

,N
F

R
[9

9]
,

N
et

S
TA

T
[1

52
],

R
ea

lS
ec

ur
e

[7
1]

H
os

t-
ba

se
d

(5
2%

)

A
D

S
[1

18
],

A
ID

[1
34

],
A

LV
A

[9
0]

,A
S

A
X

[5
6]

,
C

M
D

S
[1

15
],

C
om

pW
at

ch
[4

2]
,C

yb
er

C
op

M
on

ito
r

[1
10

],
H

ay
st

ac
k

[1
32

],
H

yp
er

vi
ew

[3
9]

,
ID

A
[6

],
ID

E
S

[8
6]

,I
D

IO
T

[7
9]

,I
nt

ru
de

r
A

le
rt

[1
48

],
K

an
e

S
ec

ur
ity

M
on

ito
r

[2
9]

,
M

ID
A

S
[1

28
],

N
A

D
IR

[6
3]

,N
ID

E
S

[3
],

N
S

TA
T

[7
4]

,P
O

LY
C

E
N

T
E

R
[4

1]
,P

R
C

is
[8

4]
,

P
si

on
ic

H
os

tS
en

tr
y

[1
16

],
P

si
on

ic
Lo

gc
he

ck
/L

og
S

en
tr

y
[1

16
],

U
N

IC
O

R
N

[2
2]

,
U

S
TA

T
[7

0]
,W

is
do

m
&

S
en

se
[1

50
],

al
er

t.s
h

fo
r

F
W

-1
[1

38
],

au
di

tG
U

A
R

D
[3

8]
,e

T
ru

st
A

ud
it

[2
6]

A
A

F
ID

[1
37

],
C

A
R

D
S

[1
56

],
C

S
M

[1
53

],
C

en
tr

ax
[5

3]
,D

ID
S

[1
33

],
D

P
E

M
[7

7]
,

D
ra

go
n

[4
5]

,E
M

E
R

A
LD

[1
12

],
G

rI
D

S
[1

39
],

H
P

ID
S

/9
00

0
[6

1]
,H

um
m

er
[5

1]
,J

iN
ao

[7
3]

,
R

ea
lS

ec
ur

e
[7

1]

Direct
(18%)

H
os

t-
ba

se
d

ex
te

rn
al

(1
0%

)
A

pp
S

hi
el

d
[1

24
],

E
nt

er
ce

pt
[4

6]
,J

an
us

[5
4]

,
P

si
on

ic
P

or
tS

en
tr

y
[1

16
],

T
rip

w
ire

[7
6]

A
A

F
ID

[1
37

],
H

P
ID

S
/9

00
0

[6
1]

,
S

to
rm

W
at

ch
[1

01
]

H
os

t-
ba

se
d

in
te

rn
al

(8
%

)
C

yl
an

tS
ec

ur
e

[1
54

],
LI

D
S

[6
8]

,O
pe

nW
al

lK
er

ne
l

pa
tc

h
fo

r
Li

nu
x

[1
05

],
pH

[1
35

]
F

or
m

at
G

ua
rd

[3
1]

10

ternal/internal) classifications of data collection mechanisms. We discuss the advantages

and disadvantages of each one of them.

The termmonitored componentis used in this chapter and in the rest of this dissertation

as follows:

WORKING DEFINITION 2.1: MONITORED COMPONENT

A host or a program that is being monitored by an intrusion detection system.

By this definition, an intrusion detection system that is explicitly monitoring several

programs in a host (for example, the kernel, the email server and the HTTP server) could

be considered as monitoring several components even if they are all in the same host.

2.1.1 Data collection structure: centralized and distributed

When talking about data collection architectures for intrusion detection, the classifica-

tion normally refers to the locus of data collection. The following definitions are based on

those provided by Axelsson [7].

DEFINITION 2.2: CENTRALIZED DATA COLLECTION

Data used by the intrusion detection system is collected at a number of locations that

is fixed and independent of the number of monitored components.

DEFINITION 2.3: DISTRIBUTED DATA COLLECTION

Data used by the intrusion detection system is collected at a number of locations that

is directly proportional to the number of monitored components.

In these definitions, alocation is defined as an instance of running code. So for ex-

ample, a data collection mechanism implemented in a shared library could be considered

as distributed provided that the library will be linked against multiple programs, because

each running program will execute the mechanism separately. However, if the shared li-

brary will be linked against a single program and it will collect all the information needed

by the intrusion detection system, we would consider it as centralized data collection. We

can see that these definitions depend not only on how the data collection components are

implemented, but also on how they are used.

11

As can be seen in Table 2.1, both distributed and centralized data collection have been

widely used in existing intrusion detection systems and have almost equal percentages in

the systems listed in the table. A report by Axelsson [7] shows that the trend over the

years has been towards distributed intrusion detection systems, which need distributed data

collection.

The distinction between centralized and distributed data collection is the feature most

commonly used for describing the data collection capabilities of an intrusion detection

system. However, for the purposes of this dissertation, we are more interested in discussing

the mechanisms used to perform data collection and the data sources utilized. These are

described in the next sections.

2.1.2 Data collection mechanisms: direct and indirect monitoring

In the physical world, a direct observation is one in which we can use one or more

of our senses to observe or measure a phenomenon, and an indirect observation is one in

which we rely on a tool or on an observation by someone (or something) else to obtain the

information.

We build similar definitions in the context of data collection for intrusion detection.

When an intrusion detection system can measure a condition or observe behavior in the

monitored component by obtaining data directly from it, we use the termdirect monitoring.

When the intrusion detection system relies on a separate mechanism or tool for obtaining

the information, we use the termindirect monitoring. In other words, direct monitoring is

the measurement or observation of a characteristic of an object, and indirect monitoring is

the measurement or observation of the effects of the object having that characteristic.

For example, using theps [146] command to observe CPU load on a Unix host is

considered a case of direct monitoring becauseps directly extracts the load data from the

corresponding data structures in the kernel. By comparison, if the CPU load is recorded in

a log file and later read from there, we consider it a case of indirect monitoring because we

are relying on a separate mechanism (in this case, a file) for the observation.

Based on the above discussion, we state that all data collection methods can be classified

as direct or indirect according to the following definitions:

12

DEFINITION 2.4: DIRECT MONITORING

The observation of the monitored component by obtaining data directly from it.

DEFINITION 2.5: INDIRECT MONITORING

The observation of the monitored component through a separate mechanism or tool.

Common examples of mechanisms through which indirect monitoring can be performed

are log files and network packets. The data obtained from these mechanisms is an effect

of the data having been present in the components that generated the data. If the data were

obtained directly from the component that generated them (for example, by reading the

appropriate data structures on the host before a packet is sent to the network), we would be

performing direct monitoring.

To perform intrusion detection, direct monitoring is better than indirect monitoring for

the following reasons:

Reliability: Data from an indirect data source (for example, a log file) could potentially

be altered by an intruder before the intrusion detection system uses it. It could also

be affected by non-malicious failures. For example, a disk becoming full or a log file

being renamed could make the data unavailable to the intrusion detection system.

Completeness:Some events may not be recorded on an indirect data source. For example,

not every action of theinetd daemon gets recorded to a log file.

Furthermore, an indirect data source may not be able to reflect internal information

of the object being monitored. For example, a TCP-Wrappers [151] log file cannot

reflect the internal operations of theinetd daemon. It can only contain data that is

visible through its external interfaces. While that information may be sufficient for

some purposes (for example, knowing what address a request came from), it may not

be sufficient for others (for example, knowing which specific access rule caused a

request to be denied).

13

Volume: With indirect monitoring, the data is generated by mechanisms (for example, the

code that writes the audit trail) that have no knowledge of the needs of the intrusion

detection system that will be using the data. For this reason, indirect data sources

usually carry a high volume of data. For example, Kumar and Spafford [80] mention

that a C2-generated audit trail might contain 50K-500K records per user per day. For

a modest-size user community, this could amount to hundreds of megabytes of audit

data per day, as pointed out by Mounji [92].

For this reason, when indirect data sources are used, the intrusion detection system

has to spend more resources in filtering and reducing the data even before being able

to use them for detection purposes.

A direct monitoring method has the ability to select and obtain only the informa-

tion it needs. As a result, smaller amounts of data are generated. Additionally, the

monitoring components could partially analyze the data themselves and only produce

results when relevant events are detected. This would practically eliminate the need

for storing data other than for forensic purposes.

Scalability: The larger volume of data generated by indirect monitoring results in a lack

of scalability. As the number of hosts and monitoring elements grows, the overhead

resulting from filtering data can cause degradation in the performance of the hosts

being monitored or overload of the network on a centralized intrusion detection sys-

tem.

Timeliness: Indirect data sources usually introduce a delay between the moment the data

is produced and when the intrusion detection system can have access to them. Direct

monitoring allows for shorter delays and enables the intrusion detection system to

react in a more timely fashion.

However, as can be seen in Table 2.2, there is a notable disparity in the utilization of di-

rect and indirect monitoring in intrusion detection systems. Less than 20% of the intrusion

detection systems surveyed use some form of direct monitoring. This can be attributed to

14

the main disadvantage of direct monitoring: complexity of implementation. Direct moni-

toring mechanisms have to be designed in a more specific manner to the monitored com-

ponent and the type of information that it generates. Evidence to this is that most of the

intrusion detection systems in Table 2.2 (except for CylantSecure [154] and pH [135]) that

use direct monitoring are tailored for detecting specific types of attacks.

2.1.3 Data collection mechanisms: host-based and network-based

In practice, data collection methods are commonly classified as host-based or network-

based according to the following definitions:

DEFINITION 2.6: HOST-BASED DATA COLLECTION

The acquisition of data from a source that resides on a host, such as a log file, the

state of the system or the contents of memory.

DEFINITION 2.7: NETWORK-BASED DATA COLLECTION

The acquisition of data from the network. Usually done by capturing packets as they

flow through it.

Most of the intrusions detected by intrusion detection systems are caused by actions

performed in a host. For example: executing an invalid command or accessing a service

and providing it malformed or invalid data. The attacks act on the end host although they

may occur over a network.

Also, there is the case of attacks that act on the network infrastructure components

such as routers and switches. Most of those components can be considered as hosts, and

they have the ability to perform monitoring tasks on themselves [11]. Therefore, attacks

on the network infrastructure can also be considered as acting on hosts. In cases where

the network infrastructure components cannot perform monitoring tasks (for example, be-

cause they are not programmable), attacks on those components can only be detected using

network-based data collection because the attacks do not act directly on any other hosts in

the network. For the rest of our discussion, we will consider routers and switches as hosts.

The only attacks that act on the network itself are those that flood the network to its

capacity and prevent legitimate packets from flowing. However, most of these attacks

15

can also be detected at the end hosts. For example, a Smurf attack [69] could be de-

tected at the ICMP layer in the host by looking for the occurrence of a large number of

ECHO RESPONSE packets.

In general, it is advisable to use host-based data collection for the following reasons

(see also the discussion by Daniels and Spafford [37]):

• Host-based data collection allows collecting data that reflect accurately what is hap-

pening on the host, instead of trying to deduce it based on the packets that flow

through the network.

• In high-traffic networks, a network monitor could potentially miss packets, whereas

properly implemented host monitors can report every single event that occurs on each

host.

• Network-based data collection mechanisms are subject to insertion and evasion at-

tacks, as documented by Ptacek and Newsham [117]. These problems do not occur

on host-based data collection because they act on data that the host already has.

• If the data needed by the intrusion detection system flows through disjoint paths (as

might be the case with a network with multiple gateways or when using switching

hubs), performing network-based data collection can become difficult and unreliable,

and the task of unifying the data coming from different collectors for use by the

intrusion detection system may not be trivial.

• The use of encryption renders network-based data collection mechanisms ineffective

because they cannot examine the contents of encrypted communications.

• Network-based data collection mechanisms cannot observe actions that occur inside

a host, so they will miss local attacks.

Network-based data collection also has some advantages, including the following:

• An intrusion detection system that uses network-based data collection can be de-

ployed on an existing network without having to make any changes to the hosts. For

16

this reason, a large number of commercial intrusion detection systems use network-

based data collection.

• A network-based data collection component can be completely invisible to other

hosts (this can be achieved even at the hardware level), providing a convenient van-

tage point from which to observe the actions on the network.

We consider network-based data collection as a form of indirect monitoring because

the network traffic is an effect of the data and activity at the hosts (see Definition 2.5). In a

more general sense, the advantages and disadvantages just described reflect the distinction

between direct and indirect data collection.

The relationship between the traditional host-based/network-based classification of in-

trusion detection systems [93] and the types of monitoring described in Section 2.1.2 is as

follows and can be seen in Table 2.2: Intrusion detection systems normally considered as

“network-based” correspond to Indirect/Network-based monitoring mechanisms, whereas

Indirect/Host-based and all Direct monitoring mechanisms correspond to the “host-based”

intrusion detection systems.

Both host-based and network-based data collection have been widely used in intrusion

detection systems. In recent years, an increasing number of intrusion detection systems

have started to use both host-based and network-based components in an attempt to obtain

the most complete view of the hosts being monitored.

The architecture described in this dissertation corresponds to a system that uses host-

based data collection.

2.1.4 Data collection mechanisms: external and internal sensors

All direct monitoring methods are host-based. Direct monitoring of a host can be done

using external or internal sensors according to the following definitions:

DEFINITION 2.8: EXTERNAL SENSOR

A piece of software that observes a component (hardware or software) in a host and

reports data usable by an intrusion detection system, and that is implemented by code

separate from that component.

17

DEFINITION 2.9: INTERNAL SENSOR

A piece of software that observes a component (hardware or software) in a host and

reports data usable by an intrusion detection system, and that is implemented by code

incorporated into that component.

For example, a program that uses theps command [146] to obtain process information

on a Unix system could be considered an external sensor. If the process-information gath-

ering component was built into the Unix kernel, it would be considered an internal sensor.

A library wrapper [81] is considered as an external sensor because its code is separate from

that of the program it monitors. According to our definitions, an internal sensor could also

be built into hardware components; for example, in the firmware of a network interface

card.

Internal sensors are part of the source code of the monitored component. They can be

added to an already existing program, and in that case they can be considered as a case of

source code instrumentation. Ideally, internal sensors should be added during development

of the program when the cost and effort of making changes and fixing errors is lower [108].

Also, at that point the sensors could be added by the original authors of the program instead

of by someone else—who would have the added cost of understanding the program first.

Note that by our definitions, any portion of a program can be considered as an internal

sensor, as long as it provides data that can be used by an intrusion detection system. No

specification is made about how the data should be produced or transmitted.

External and internal sensors for direct data collection have different strengths and

weaknesses and can be used together in an intrusion detection system. Tables 2.3 and 2.4

list the advantages and disadvantages of each type of sensor.

From the point of view of software engineering, internal and external sensors present

different characteristics in the following aspects:

Introduction of errors: It is potentially easier to introduce errors in the operation of a

program through the use of internal sensors because the code of the program being

monitored has to be modified. Errors can also be introduced by external sensors (for

18

Table 2.3
Advantages and disadvantages of external sensors.

External sensors
Advantages Disadvantages

• Easily modified, added or removed
from a host.
• Can be implemented in any pro-

gramming language that is appropri-
ate for the task.

• There is a delay between the genera-
tion of the data and their use because
after the data are produced they have
to be made available on an exter-
nal source before a sensor can access
them.
• The information can potentially be

modified by an intruder before the
sensor obtains it (for example, if the
data are read from a log file).
• Can potentially be disabled or modi-

fied by an intruder.
• Added performance impact be-

cause the sensors are separate
components—processes, threads, or
loaded libraries–possibly running
continuously.
• Limited access to information be-

cause they depend on existing mech-
anisms (such as Unix commands or
system calls) to obtain it.

19

Table 2.4
Advantages and disadvantages of internal sensors.

Internal sensors
Advantages Disadvantages

• Minimum delay between the gen-
eration of the information and its
use because it can be obtained at its
source.
• It is practically impossible for an

intruder to modify data to hide his
tracks because data are never stored
on an external medium before the
sensor obtains them.
• Cannot be easily disabled or mod-

ified because they are not separate
processes.
• Network traffic and processing load

are reduced because embedded sen-
sors can look for specific pieces
of information instead of reporting
generic data for analysis. Also, they
can partially analyze the data at the
moment of acquisition.
• Embedded sensors do not cause a

continuous CPU overhead because
they are only executed when re-
quired. This makes it possible to in-
corporate a larger number of sensors
on a single host.
• Because they are implemented as

part of the program they are monitor-
ing, they can access any information
that is necessary for their task.

• Their implementation requires ac-
cess to the source code of the pro-
gram that needs to be monitored.
• Arguably harder to implement be-

cause they require modifications to
the program being monitored. How-
ever, if the sensors are added dur-
ing development of the program, this
problem is reduced.
• Need to be implemented in the same

language as the program they are go-
ing to monitor.
• If designed or implemented incor-

rectly, they can severely harm the
performance or the functionality of
the program they are part of.
• Harder to update or modify and to

port to different operating systems,
or even to different versions of the
same program.
• Reduced portability, because the

sensors depend on the specifics of
the code where they are imple-
mented.

20

example, an agent that consumes an excessive amount of resources, or an interposed

library call that incorrectly modifies its arguments). We claim that most internal

sensors can be fairly small pieces of code. Their size allows them to be extensively

checked for errors. Also, this problem would be reduced if sensors were added during

development of the program instead of afterwards.

Maintenance: External sensors are easier to maintain independently of the program they

monitor because they are not part of it. However, when internal changes to the pro-

gram occur, it can be simpler to update internal sensors (which can be changed at the

same time the program is modified) than external sensors (which have to be kept up

to date separately).

Size: Internal sensors can be smaller (in terms of code size and memory usage) than exter-

nal sensors because they become part of an existing program; thus, avoiding the base

overhead associated with the creation of a separate process.

Completeness:Internal sensors can access any piece of information in the program they

are monitoring whereas external sensors are limited to externally-available data. For

this reason, internal sensors can have more complete information about the behavior

of the monitored program. Furthermore, because internal sensors can be placed any-

where in the program they are monitoring, their coverage can be more complete than

that of an external sensor which can only look at the program “from the outside.”

Correctness: Because internal sensors have access to more complete data, we expect them

to produce more correct results than external sensors, which often have to act based

on incomplete data.

External sensors are better in terms of ease of use and maintainability whereas internal

sensors are superior in terms of monitoring and detection abilities, resilience and host im-

pact. Both types of sensors can be used in an intrusion detection system to take advantage

of their strengths according to the specific task each sensor has to accomplish.

21

We can see in Table 2.2 that a small percentage of the intrusion detection systems sur-

veyed use internal sensors and most of those were designed for detecting specific types of

attacks—the two exceptions are CylantSecure [154] which uses internal sensors for collect-

ing information analyzed externally, and pH [135], which fully implements data collection

and detection using internal sensors, and is a good example of the potential of internal sen-

sors. This can be attributed to the considerable difficulty in the implementation of internal

sensors: the monitored components themselves have to be modified. On closed-source sys-

tems, this is impossible unless the vendor provides the modifications, and on open-source

systems it can be cumbersome and time consuming.

2.2 Data analysis architectures

Intrusion detection systems are classified as centralized or distributed with respect to

how the data analysis components are distributed, as follows [137]:

DEFINITION 2.10: CENTRALIZED INTRUSION DETECTION SYSTEM

An intrusion detection system in which the analysis of the data is performed in a

number of locations that is fixed and independent of the number of monitored com-

ponents.

DEFINITION 2.11: DISTRIBUTED INTRUSION DETECTION SYSTEM

An intrusion detection system in which the analysis of the data is performed in a

number of locations that is directly proportional to the number of monitored compo-

nents.

Note that these definitions are based on the number of monitored components and not

of hosts (as has been traditionally the case), so it is feasible to have an intrusion detection

system that uses distributed data analysis within a single host if the analysis is performed

in different components of the system.

In the definitions above, alocation is defined as an instance of running code. So for

example, an analysis component implemented in a shared library could be considered as

a distributed analysis component if the library will be linked against multiple programs,

22

because each running program will execute the analysis component separately. However, if

the shared library will be linked against a single program and all the data analysis will occur

there, we would consider it as centralized analysis. So we can see that these definitions

depend not only on how the analysis components are implemented, but also on how they

are used.

Both distributed and centralized intrusion detection systems may use host- or network-

based data collection methods, or a combination of them.

Some strengths and weaknesses of centralized and distributed intrusion detection sys-

tems are shown in Table 2.5.

It can be observed from Table 2.1 that the vast majority of intrusion detection systems

surveyed use centralized data analysis. This can be attributed to the difficulty in the imple-

mentation of a distributed analysis mechanism.

Most weaknesses of distributed intrusion detection systems can be overcome through

technical means whereas centralized intrusion detection systems have some fundamental

limitations (for example, with respect to scalability and graceful degradation of service).

In the last few years, an increasing number of distributed intrusion detection systems has

been designed and built [e.g. 11, 66, 112, 137, 139].

2.3 Experiences in building a distributed intrusion detection system

AAFID [137] is a framework for distributed monitoring of hosts in a network specifi-

cally oriented towards intrusion detection. It uses a hierarchical structure of entities. At the

lowest level in the hierarchy, AAFID agents perform monitoring functions on a host and

report their findings to the higher levels of the hierarchy where data reduction is performed.

During the implementation of the AAFID system, we faced decisions regarding the

type of monitoring to use, and we experienced the limitations of indirect monitoring and of

external sensors. Even when trying to do direct monitoring, we encountered problems with

the specific techniques used to perform it. These experiences prompted us to investigate

new data collection techniques for intrusion detection.

AAFID was designed to use host-based data collection; therefore the agents run in

each host and collect data from it. Audit trails are the most abundant source of data in a

23

Table 2.5
Comparison between centralized and distributed intrusion detection systems with respect

to some of the desirable characteristics described in Section 1.2.2.

Characteristic Centralized Distributed

Reliability A relatively small number of com-
ponents need to be kept running.

A larger number of components
need to be kept running.

Fault tolerance The state of the intrusion detec-
tion system is centrally stored,
making it easier to recover it after
a crash, but also making it easier
to get corrupted by a failure.

The state of the intrusion detec-
tion system is distributed, mak-
ing it harder to store in a consis-
tent and recoverable manner, but
improving the chances that most
parts will survive after a failure.

Added
overhead

Impose little or no overhead on
the hosts except for the ones
where the analysis components
run. In those hosts a large load is
imposed and they may need to be
dedicated to the analysis task.

Impose little overhead on the
hosts because the components
running on them are smaller.
However, the extra load is im-
posed on most of the hosts being
monitored.

Scalability The size of the intrusion detec-
tion system is limited by its fixed
number of components. As the
number of monitored hosts grows,
the analysis components will need
more computing and storage re-
sources to keep up with the load.

A distributed intrusion detection
system can scale to a larger num-
ber of hosts by adding compo-
nents as needed. Scalability may
be limited by the need to commu-
nicate between the components
and by the existence of central co-
ordination components.

Graceful
degradation of
service

If one of the analysis components
stops working, most likely the
whole intrusion detection system
stops working. Each component
is a single point of failure.

If one analysis component stops
working, some programs or hosts
may stop being monitored, but the
rest of the intrusion detection sys-
tem can continue working.

Dynamic re-
configuration

A small number of components
analyze all the data. Reconfig-
uring them may require the in-
trusion detection system to be
restarted.

Individual components may be re-
configured or added without af-
fecting the rest of the intrusion de-
tection system.

24

Unix system and are the data source used by most intrusion detection systems. In the first

implementation of the AAFID system, most of the agents obtained their data from log files.

However, audit trails are an indirect data source and suffer from the drawbacks mentioned

in Section 2.1.2.

To perform direct data collection appropriately, operating system support is needed,

possibly in the form of hooks to allow insertion of checks at appropriate points in the

system kernel and its services. Lacking this support, we implemented direct monitoring

using the following mechanisms:

• Separate entities that run continuously, obtaining information and looking for intru-

sions and notable events.

This is the form of most existing AAFID agents. Some agents obtain information

from the system by running commands (such asps [146], netstat [144] ordf [142]),

others by looking at the state of the file system (for example, checking file permis-

sions or contents) and others by capturing packets from a network interface (note

that this is not necessarily the same as doing network-based monitoring because in

most cases these agents will only capture packets destined to the local host, and not

to other hosts). Some agents have to resort to indirect monitoring by looking at audit

trails because in some cases an audit trail is the only place where information can be

obtained by an external sensor.

• Wrapper programs that interact with existing applications or utilities and try to ob-

serve their behavior by looking at their inputs and outputs.

• Wrapper libraries using library interposition [81].

Using this technique, calls to library functions can be intercepted, monitored, mod-

ified or even cancelled by the interposing library. This is a powerful technique that

can detect a wide range of attacks, but it is limited because it can only look at the data

available as arguments to each call and at the global variables of a program. It cannot

have access to any other internal data of the calling program or the called subroutine.

25

All these techniques of data collection can be classified as external sensors and have

the weaknesses described in Section 2.1.4. For this reason, we started further exploration

of the use of internal sensors which formed the basis for this dissertation.

2.4 Comments about intrusion detection architectures

In this chapter, we have described some of the main architectural concepts that are used

in intrusion detection. In data collection, host-based direct monitoring using internal sen-

sors presents multiple benefits in terms of efficiency, reliability and data collection abilities.

However direct monitoring using internal sensors has been used by few intrusion detec-

tion systems, as shown in Table 2.2. This is a consequence of the implementation difficulty

of internal sensors and of the lack of studies regarding their properties and the related de-

sign and implementation issues. Also, internal sensors lack portability and increase the

cost of deployment and maintenance of the intrusion detection systems because they re-

quire dealing with the source code of each program that needs to be monitored. However,

the general idea of using internal sensors is to get as close as possible to the data sources

needed by the intrusion detection system, and are the only mechanism able to provide other

desirable characteristics, including fidelity, reliability and resistance to attacks. For these

reasons, it is important to explore their capabilities and limitations.

In data analysis, a distributed architecture provides multiple benefits in terms of scal-

ability, reliability and efficiency. This is the reason why through the years, intrusion de-

tection system research and development has tended towards working on distributed sys-

tems [7].

Note that distributed intrusion detection systems are usually associated with operation

on multiple hosts. However, according to the definitions given in this chapter, the compo-

nents of a distributed intrusion detection system do not necessarily have to be in different

hosts. If multiple parts of a single host are being monitored, and the data analysis com-

ponents reside on different parts of the system, they could be considered as a single-host

distributed intrusion detection system.

This chapter is organized around the distinction between the data collection and data

analysis steps. Conceptually, this distinction is useful for analysis and for reasoning about

26

the intrusion detection process. Its usefulness has been shown in efforts to model the intru-

sion detection process [7] and intrusion detection systems [111].

In practice, essentially every intrusion detection system has followed this separation by

making data collection and analysis two distinct steps separated in time and often in space.

However, this separation has the following shortcomings:

• It creates a window of time between the generation and the use of data. This can

cause inconsistencies between what the intrusion detection system “sees” and the

state of the system at the time the data is analyzed. It also increases the possibility that

the data get modified before the intrusion detection system analyzes them, either by

accident or malicious action. Furthermore, it reduces the timeliness of the reactions

of the intrusion detection system: by the time it analyzes the data and reacts to an

intrusion, it may be too late to do anything about it.

• It lengthens the path through which the data has to flow between its generation and

its use. This increases the amount of traffic in the system (within the host or over the

network), reducing the scalability of the intrusion detection system. It also increases

the time between the generation and use of the data and brings along all the problems

described in the previous item.

For these reasons, in practice, the data collection and analysis steps should be as close

together as possible.

The rest of this dissertation describes a distributed architecture based on internal sen-

sors that addresses many of the problems mentioned above and has significant beneficial

properties with respect to the desirable characteristics described in Section 1.2.2.

2.5 Related work

The lack of adequate audit data for intrusion detection was documented by Price [114],

showing that most intrusion detection systems in existence today operate with incomplete

data, which are insufficient to support adequate detection. Internal sensors are able to

overcome limitations in auditing systems by performing direct monitoring and completely

skipping the operating system’s auditing system.

27

The work by Crosbie and Spafford [33, 35] provided the foundation for using a large

number of small independent components in intrusion detection. This work also provides

an idea of how internal sensors could become more complex entities when necessary. They

could even learn or evolve as they capture data about their environment.

The analysis of system call sequences to detect intrusions proposed by Forrest et al.

[49] is a technique that lends itself naturally to be implemented using internal sensors. This

was demonstrated in practice by the further development of the pH system based on that

technique [135], which is implemented almost completely inside the Linux kernel. The

pH system also responds to attacks by slowing down or aborting system calls, showing

the potential that internal sensors have for providing not only detection but also response

capabilities.

The collection of data using specialized mechanisms for detecting certain vulnerabili-

ties in a Unix kernel was described by Daniels and Spafford [37]. That work focused on

low-level IP vulnerabilities, and described the generation of new audit events (which could

be classified as internal sensors) and the implementation of methods for detecting certain

vulnerabilities.

Erlingsson and Schneider [47] described the use ofreference monitorsto monitor the

execution of a program. The reference monitors they describe are implemented as code

that evaluates a security automaton and is inserted automatically before any instruction that

accesses memory. These reference monitors could be considered as internal sensors that

check for generic violations of policy. The monitors also halt the program when a violation

is detected, so it can be considered as a reactive intrusion detection system.

The concept of application-level intrusion detection has been described by Sielken

[131], who discussed advantages of the approach from a theoretical standpoint. We agree

with the advantages that application-specific monitoring can provide for intrusion detec-

tion. Internal sensors are an ideal tool for this purpose because they can be embedded into

any program, whether it is a system program or a user-level application.

The idea of using library interposition for intrusion detection, as described by Kuper-

man and Spafford [81] was a first step in doing direct data collection for intrusion detec-

28

tion. We classify it as a form of external sensors, but we think it can be further developed

to provide good application-specific intrusion detection by, for example, tailoring inter-

posed libraries to specific applications, or combining data generated by interposed libraries

with data provided by internal sensors to get a complete picture of what is happening in a

program.

As shown in Table 2.2, few intrusion detection systems have been developed using

internal sensors. CylantSecure [154] utilizes internal sensors but only in the form of coun-

ters whose values are used to build a profile of program behavior. The values reported by

the sensors are analyzed and profiled by an external program. The LIDS [68] and Open-

wall [105] projects have developed kernel patches for Linux [10] that prevent certain op-

erations defined as “dangerous.” These patches add checks that constitute internal sensors,

but are specifically tuned for preventing those operations.

Another example of the use of internal sensors is FormatGuard [31]. This is a spe-

cialized tool for detecting and preventing format-string-based buffer overflows [98, 127].

By recompiling the affected programs, code is inserted for checking when a format string

attack is attempted against any of the functions instrumented. These pieces of code con-

stitute internal sensors that detect attacks in a distributed fashion (because even within a

single host, the “data analysis” is done by the sensors at each monitored component). For-

mat string attacks are difficult to detect, and FormatGuard is one clear example of one of the

advantages of internal sensors over external sensors: They can access internal information

of the monitored component and can even add or re-implement functionality or information

as needed to aid in the detection.

29

3. AN ARCHITECTURE FOR INTRUSION DETECTION BASED

ON INTERNAL SENSORS

Internal sensors have many characteristics that make them well-suited for performing host

monitoring and intrusion detection, as described in Section 2.1.4. In this chapter, we de-

scribe an architecture for intrusion detection called ESP (fromEmbedded Sensors Project)

with the following main characteristics:

• Internal sensors are the main data collection component.

• It provides for distributed, localized data reduction through the use of embedded

detectors.

• It also contemplates the existence of external sensors when necessary for data pro-

cessing and higher-level operations.

The ESP architecture could be classified in the [Distributed, Distributed] cell of Ta-

ble 2.1 and in the [Direct/Host-based internal, Distributed] cell of Table 2.2.

3.1 Embedded detectors

The ESP architecture uses embedded detectors as a mechanism for localized data re-

duction.

WORKING DEFINITION 3.1: EMBEDDED DETECTOR

An internal sensor that looks for specific attacks and reports their occurrence.

Embedded detectors should exist in the code at the point where an attack can be detected

by using the data available at that moment. If implemented correctly, detectors are able to

determine whether an attack is taking place by performing simple checks.

30

1 char buf[256];
2 strcpy(buf, getenv("HOME"));

1 char buf[256];
2 {
3 if (strlen(getenv("HOME"))>255) {
4 log_alert("buffer overflow");
5 }
6 }
7 strcpy(buf, getenv("HOME"));

Code before inserting detector Code after inserting detector

Figure 3.1. Example of code vulnerable to a buffer overflow before and after inserting an
embedded detector. On the right, lines 2–6 form the embedded detector.

Because of their detection abilities, embedded detectors are a mechanism for perform-

ing localized data reduction. This is particularly important in a distributed intrusion detec-

tion system for reducing the amount of data generated by the system.

3.1.1 How embedded detectors work

Figure 3.1 shows an example of a simple embedded detector. The code on the left

is potentially vulnerable to a buffer-overflow attack [2] because the value of the HOME

environment variable is being copied to a buffer without checking its length. On the right,

lines 2–6 have been added and constitute an embedded detector. This detector computes

the length of the HOME environment variable. If it is longer than the buffer into which

it will be copied, the detector generates an alert. This example assumes that the function

log alert has been defined elsewhere. The string “buffer overflow” is shown only as an

example—in a real detector, a more descriptive message should be provided.

This example gives an idea of how embedded detectors work in general: they look at

the information available in the program to determine if an attack is taking place. If such a

condition is found, an alert is generated.

The example in Figure 3.1 does not try to prevent the overflow from happening. It only

reports its occurrence, as per our definition of embedded detector. Potentially, embedded

detectors could try to stop the intrusions they detect. For example, our sample detector

could cut the HOME environment variable to 255 characters to ensure that it will fit in the

allocated buffer. However, the effects of detectors modifying data or altering the program

31

flow are much harder to analyze. Our current work has focused on detection and not on

reaction.

3.1.2 Relationship between internal sensors and embedded detectors

The difference between an internal sensor and an embedded detector is that sensors can

observe any condition in a program and report its current state or value; whereas a detector

looks for specific signs of attacks (Figure 3.2(a)). Embedded detectors are a specialized

form of internal sensors.

Conceptually, an embedded detector can be considered as an internal sensor with added

logic for detecting attacks, as shown in Figure 3.2(b). In some cases, the internal sensor

is clearly differentiable in the code. For example, a detector for port scans [52] bases its

decision on a sensor that keeps track of connections to ports and reports their number and

sources.

In other cases, the internal sensor is implicitly built into the embedded detector and

its value is immediately used to take a decision. For example, a detector for a Ping-of-

death [16] attack can check the size of a ping packet by comparing a variable against a

certain threshold and emitting an alert if it is larger. In this case, the conceptual “sensor”

would be the act of reading the value of the variable, and the “detector” portion would be

the comparison of the value against a threshold.

This difference between the data collection and data analysis portions of an embedded

detector can be significant in practice. In some cases, data from a single internal sensor—

for example, the accumulated non-requested packets that have been received from a host—

can be used by multiple detectors to look for different attacks (Figure 3.2(c)). It is also

possible that a single detector collects data from multiple sensors (Figure 3.2(d)).

As mentioned in Section 2.4, the data collection and data processing phases of the

intrusion detection process should be as close together in time and space as possible. For

this reason, most embedded detectors should be of the type in which the sensor and the

detector are tightly coupled together.

32

Sensor Values Detector Alerts

Program Program

(a) Sensors generate values; detectors generate alerts.

Embedded detector

Internal sensor Logic for
(implicit or explicit) detection

(b) Conceptual structure of an embedded detector.

Sensor Detector

Detector

Detector

(c) One sensor can provide data to multiple detectors.

Sensor

Sensor

Sensor

Detector

(d) Multiple sensors can provide data to a single detector.

Figure 3.2. Relationships and differences between internal sensors and embedded
detectors.

33

3.1.3 Stateless and stateful detectors

One of the distinguishing characteristics of internal sensors (and of embedded detectors

by extension) is that they can be placed at any point in the monitored component. Ideally,

they should be placed at the point at which the information needed to detect an attack is

readily available.

However, there are some cases in which a detector may need to collect information over

a period of time to detect an attack. One example is the detection of port scans. A port scan

cannot be signaled at the first packet received from a host because other packets could be

on their way, and they should be observed to make a proper determination about the type

and scope of the port scan that is taking place. So the detector (or its associated sensor)

needs to accumulate information about packets that have been received from other hosts.

When enough evidence is accumulated, an alert should be produced.

Considering this possibility, embedded detectors are classified in two groups:

WORKING DEFINITION 3.2: STATELESS EMBEDDED DETECTOR

A detector that bases its decisions solely on information present in the program at

the time of evaluation, or that can be obtained from the system at the moment it is

needed.

WORKING DEFINITION 3.3: STATEFUL EMBEDDED DETECTOR

A detector that adds information to the program for the purpose of detection. It may

decouple data gathering and evaluation into two separate tasks.

This classification has an impact in the way sensors are designed and implemented.

Stateless sensors are usually short because they check for an existing condition. Stateful

detectors almost always add additional state-keeping code, and the state kept is used later

for the detection.

In many cases, a stateful detector has a clearly differentiable internal sensor associated

with it as discussed in Section 3.1.2.

34

1 char buf[256];
2 strncpy(buf, getenv("HOME"),
3 sizeof(buf));

1 char buf[256];
2 {
3 if (strlen(getenv("HOME"))>255) {
4 log_alert("buffer overflow");
5 }
6 }
7 strncpy(buf, getenv("HOME"),
8 sizeof(buf));

Code before inserting detector Code after inserting detector

Figure 3.3. Example of code not vulnerable to a buffer overflow before and after inserting
an embedded detector. On the right, lines 2–6 form the embedded detector.

3.1.4 Strengths and weaknesses of embedded detectors

Using embedded detectors in an intrusion detection system has the advantages and dis-

advantages mentioned for internal sensors in Table 2.4.

Additionally, embedded detectors can look for attempts to exploit a vulnerability in-

dependently of whether the vulnerability actually exists in the host where the detector is

running. For this reason, embedded detectors can detect attacks against vulnerabilities that

have already been fixed, or even that are specific to a different platform or operating sys-

tem. For example, a detector in a Unix system could detect attacks specific to Windows

NT. In this manner, embedded detectors can be used to implement a “universal honeypot”

(a honeypot is the name given to a host that is connected to a network with the purpose

of allowing attackers to explore it, usually with the objective of studying the attacker in

action). This feature is used in this dissertation for exploring the detection of intrusions

over multiple architectures and platforms.

Figure 3.3 shows code similar to the one in Figure 3.1, but this code is not vulnerable

to a buffer overflow because thestrncpy function is being used. However, the same

detector can be added to this code as shown on the right side of Figure 3.3. This example

shows how embedded detectors can exist even in code that is not vulnerable to the attacks

for which the detectors look.

35

Another advantage of embedded detectors is that they can use the existing defense

mechanisms of the monitored component (for example, if the program already looks for

malicious activity) and combine them with detection.

3.2 The ESP architecture

The ESP architecture consists of three classes of components:

• Internal sensors and embedded detectors.

• Per-host external sensors

• Network-wide external sensors

3.2.1 Internal sensors and embedded detectors

These are the lowest-level components of the architecture. Internal sensors are used for

direct monitoring of a host, and embedded detectors are used for performing localized data

analysis in which certain types of intrusions are detected.

This layer of the architecture is its main distinguishing characteristic, and its study is

the main subject of this dissertation.

3.2.2 Per-host external sensors

Although embedded detectors are able to detect a significant number of attacks, there

are some attacks that may require a higher-level analysis by observing data generated by

multiple internal sensors and embedded detectors, or even possibly data observed using

other types of sensors.

For this reason, the ESP architecture allows for a layer of components running on each

host that perform these higher-level operations. The number, structure and function of

these components are left unspecified. However, it is feasible to imagine using ideas and

components from other existing intrusion detection architectures [e.g. 97, 137] for this

function.

3.2.3 Network-wide external sensors

To operate in a network environment, an intrusion detection system needs to be able to

correlate information from multiple hosts. For this reason, the ESP architecture also allows

36

for a layer of components that monitor the operations on multiple hosts and receive data

from per-host external sensors or possibly even from network-based sensors.

The organization and specific functions of these components are outside the scope of

this dissertation which focuses on the internal sensors layer. The use of network-wide

monitoring components has been studied in other intrusion detection architectures [e.g.

97, 133, 137], and many of those concepts could potentially be applied to an ESP-based

intrusion detection system.

3.3 Distinguishing characteristics of the ESP architecture

An implementation of the ESP architecture is described in Chapter 4 and is used to test

the validity of the Thesis Hypotheses described in Section 1.4. In this section, the distin-

guishing features of the ESP architecture are discussed. They are related as appropriate

with the desired characteristics of an intrusion detection system (Section 1.2.2) and with

the drawbacks of the ESP architecture.

3.3.1 Types of data observed

ESP is fundamentally different from other intrusion detection systems in that it does

not observe network packets or audit trails. By being part of the programs that are moni-

tored, embedded detectors can obtain all the information that could be obtained from those

sources plus more information that is not available from them. The data on which an ESP

intrusion detection system bases its decisions is a combination of the following elements:

• The execution flow of the program being monitored as reflected by the location of

the detector.

• The data being used by the program as stored in the variables and data structures

available to the detector.

• Other system and program state that can be obtained by the detector.

By performing direct monitoring, ESP has all the advantages described in Section 2.1.2.

When compared to other intrusion detection techniques that observe program behavior [e.g.

37

65, 66], ESP has the advantage of being able to observe the internal data and state of the

program and not only its externally observable behavior.

These advantages come at the cost of losing generality in the implementation of the

intrusion detection components. Detectors are built specifically for looking at certain data

in certain locations, and the only way of porting them to some other location is to rewrite

the code. Without a formal analysis, it is difficult to guarantee completeness of the data

that is analyzed by the detectors in a practical implementation. However, as will be shown

in Section 5.2, it is possible to build embedded detectors able to look for generic signs of

malicious activity, regaining some generality.

Compared to other generic intrusion detection systems that use internal sensors [e.g.

36], ESP has the advantage that each embedded detector is optimized for the tasks it per-

forms. The data it produces does not need (in the general case) to be post-processed to

detect intrusive behavior.

Although ESP detectors look for specific actions that indicate intrusive activity, they do

not necessarily have to be tied to a specific attack. As will be shown in Chapter 4, detectors

can be built both for detecting specific attacks and for detecting generic intrusive activity;

therefore being able to detect both known and new attacks.

Finally, because all the data is being observed from within the program that uses it,

embedded detectors are able to examine information that would normally be unavailable.

One example would be data that is only decrypted in memory while the program is run-

ning. This improves the completeness of the data that is available to the intrusion detection

system.

These characteristics relate to desirable characteristic #8 and potentially to # 7 (see

Section 1.2.2).

3.3.2 Tighter coupling between event collection and event analysis

As mentioned in Section 2.4, data collection and data analysis have traditionally been

two clearly distinguishable, loosely coupled steps of the intrusion detection process.

The use of embedded detectors reduces this distinction because in most cases the data

used for detecting attacks is not composed of discrete events that are collected and later

38

analyzed, but of the factors described in Section 3.3.1. Therefore, ESP has the ability

of not only performing matching operations on the data it receives but is able to actually

examine the actions involved in the execution of the program.

The tighter coupling between data collection and analysis allows the detector to make

a better determination about the occurrence of an attack and reduces the length of the

path that the data has to traverse between its generation and its use; therefore it reduces the

possibility that the data could be modified, destroyed or otherwise disrupted before they are

used by the analysis components of the intrusion detection system. This aids in obtaining

desirable characteristics #3 and #8.

Note that in some cases, it might be impossible to detect an attack using information

available to a single embedded detector. In those cases, it is advisable to use internal

sensors to generate data, and perform the analysis using components that have access to

data provided by multiple internal and external sensors. Also, preservation of data may also

be necessary for forensic purposes or for analyzing long-term events. Embedded detectors

are not intended to replace other forms of data collection and analysis, but to provide a

mechanism for performing localized data reduction when appropriate.

3.3.3 Intrusion detection at the application and operating system level

Application-based intrusion detection systems [131] can detect high-level attacks and

are a good complement to network-based and operating-system–based intrusion detection

systems.

The ESP architecture can be used to perform intrusion detection at the application,

operating-system and network levels. In general, embedded detectors can be implemented

at any point in the system depending on where the information that identifies malicious

activity is available.

This flexibility helps in obtaining desirable characteristics #1 and #8.

3.3.4 Size of the intrusion detection system

Embedded detectors can be written to look specifically for the pieces of information

that they need to perform the detection without having to go through a generic process of

event collection and analysis. This makes it possible for the lowest-level components in the

39

ESP architecture to be highly optimized to their task and in most cases to be simple and

short.

The small size of the sensors and detectors provides the ESP architecture with desirable

characteristic #4.

3.3.5 Timeliness of detection

Embedded detectors can be located at the point where an intrusion would have an ad-

verse effect, or at the point at which the malicious behavior can first be detected. This al-

lows the ESP architecture to detect problems before they happen (or while they are happen-

ing) and creates the possibility of taking preemptive report, control and response actions.

Although not discussed in this dissertation, it is conceivable that the intrusion detection

system could also stop the intrusions before they cause any damage. This could be done by

modifying the data that the program is using, by altering its state, or in extreme cases, by

stopping or killing the program itself.

The timeliness of detection relates to desirable characteristics #1 and #8c.

3.3.6 Impact on the host

Embedded detectors in the ESP architecture are intended to perform simple checks to

determine whether an attack is taking place. For this reason, they can have low impact on

the host they are monitoring. For the same reason, it is possible to have a larger number of

detectors in a host, increasing detection capabilities without imposing a large overhead.

However, note that because sensors and detectors can exist anywhere in the monitored

components (even in critical sections of the code), a defective or poorly implemented de-

tector has the possibility of significantly harming performance or reliability.

If properly implemented, the internal sensors and embedded detectors of the ESP ar-

chitecture can obtain desirable characteristic #4.

3.3.7 Resistance to attack

At the lowest data collection and analysis level (that of the internal sensors and the em-

bedded detectors), the ESP architecture is completely integrated into the monitored com-

ponents, and there are no separate processes that belong to the intrusion detection system

running on the host. For this reason, such an intrusion detection system is less vulnerable to

40

tampering or disabling by an intruder. To disable the intrusion detection system, an attacker

would have to disable the monitored component. Although this potentially constitutes an

attack unto itself, it makes it impossible for the intruder to tamper with the monitored com-

ponent to make it act in an unauthorized way (for example, by increasing its privileges)

without being detected.

This high level of integration with the monitored components helps the ESP architecture

to obtain desirable characteristic #3.

Because the monitored components have to be modified, the cost of implementation for

an intrusion detection system that uses the ESP architecture may be higher than that for

one which uses only external sensors. If the intrusion detection system is implemented on

an existing system, the source code must be available, and the implementer needs to study

and understand the source code before making any modifications. Ideally, ESP sensors and

detectors should be incorporated into a program during its development.

41

4. THE ESP IMPLEMENTATION

This chapter describes the details of the implementation of a prototype intrusion detec-

tion system based on the ESP architecture. This prototype uses embedded detectors and

constitutes the main testing and analysis platform for this dissertation.

4.1 Purpose of the implementation

The two hypotheses that underlie this dissertation (Section 1.4) are practical in nature.

First, they intend to show that it is feasible to build an intrusion detection system using the

ESP architecture. Second, it can be used to detect both known and new attacks. Therefore,

an implementation was a center point for the development of this dissertation and was used

both for practical verification of the intended features of the architecture and for aiding in

reasoning about and experimenting with its characteristics.

The ESP implementation was also used to confirm the possibility of building both spe-

cific and generic detectors.

In the rest of this chapter, the term “detector” is used to mean both internal sensors and

embedded detectors except when explicitly stated otherwise.

4.2 Specific and generic detectors

Related to the ESP implementation, the concepts of specific and generic embedded

detectors are introduced.

WORKING DEFINITION 4.1: SPECIFIC DETECTOR

An embedded detector designed to detect one specific attack.

WORKING DEFINITION 4.2: GENERIC DETECTOR

An embedded detector designed to look for signs of intrusive activity that can be

used to detect a group of attacks with certain common characteristics.

42

For example, a detector implemented in theejectprogram that looks for long command-

line arguments in an attempt to exploit buffer overflows in that program would be consid-

ered a specific detector. A detector implemented in the Unix kernel that looks for long

command-line arguments passed to any program is considered a generic detector, and it

would detect not only the attacks againsteject, but also against other programs.

The efficacy of generic detectors is one of the main premises of this dissertation because

they enable ESP to detect previously unknown attacks. The overall methodology was to

start by implementing different specific detectors. The expectation was that through this

implementation, some patterns would start to emerge, and those patterns would lead to the

creation of generic detectors.

4.3 Sources of information

We used the CVE (Common Vulnerabilities and Exposures) database [21, 89] as a

source of attacks for the implementation of specific detectors. The CVE is a database that

has been widely adopted by the intrusion detection community as a naming convention for

vulnerabilities and attacks against computer systems. It does not provide a classification or

taxonomy, but a unique identifier for each entry, pointers to sources of information, and a

best-effort guarantee that no duplicate entries exist in the database. Furthermore, it includes

entries corresponding to multiple computer architectures, operating systems and types of

vulnerabilities. Because of these features, it can be used as a fairly complete, diverse and

recognized list of known vulnerabilities and attacks.

The specific detectors implemented map directly to entries in the CVE. Linking each

detector to a CVE entry facilitates discussion and reference, and ensures that no repeated

detectors are implemented. For the ESP prototype implementation, version 20000712 of

the database was used. This version of the CVE was published on July 7 of 2000 and

contained 815 records.

Detailed information about each CVE entry, including exploits, was gathered from

common sources on the Internet [e.g. 13, 106, 122, 130, 155].

43

As a special case, we implemented detectors for different variants of port scanning [52].

Port scans are not considered attacks by themselves but are commonly a prelude to an

attack; therefore they are useful to detect. Port scans do not have CVE numbers.

4.4 Implementation platform

The detectors in our prototype have been implemented in OpenBSD [103]. This version

of the Unix operating system was chosen for the following reasons:

• The source code is available, which makes it easy to instrument the detectors both in

the kernel and in system programs. Extensive documentation is available [87, 140]

about the internals of the kernel.

• The OpenBSD source code is managed and distributed as a single directory tree.

This makes it more manageable than Linux, for example, where the source code for

different components of the operating system is distributed as separate packages. The

OpenBSD source tree closely mimics the layout of the system itself, making it easy

to locate the code for different programs and subsystems.

• The OpenBSD project is known for its attention to security and has gone through an

extensive code security audit process. Most of the security problems for which detec-

tors were implemented had already been fixed in OpenBSD. Looking at the security

patches and at the change log for each file made it easier to locate the portions of

code where the problems existed, and helped in determining where the detectors for

each attack had to be placed. In some cases the code that fixed the problem could be

identified, helping in the determination of where to put the detector code for produc-

ing a notification. Additionally, because the problems themselves no longer existed,

it was easier to try attacks against the instrumented system without worrying about

the adverse effects they could have on the host.

As described in Section 3.1.4, although OpenBSD was used as the implementation

platform, we were able to build detectors for attacks that are specific to other platforms, or

for exploitations of vulnerabilities that have already been fixed in OpenBSD. Furthermore,

44

because most of the detectors were implemented with simple modifications or additions

to existing code, they should be relatively easy to port to other systems without extensive

redesign, particularly for other Unix-like systems.

For the particular implementation described in this document, the platform used was

OpenBSD 2.7 running on a computer with an Intel processor.

4.5 Reporting mechanism

All the detectors need a mechanism for generating reports when they detect an attack.

The following characteristics were determined to be desirable for the reporting mechanism:

Exclusivity: The reporting mechanism used by the embedded detectors should not be used

by any other system in the host. This ensures that detector reports can be obtained

from a single source without having to filter extraneous messages.

Efficiency: Because large numbers of embedded detectors will exist in a host, the reporting

mechanism needs to use a minimum of resources in terms of memory and CPU. Also,

reports need to be available as soon as possible after a detector generates them.

Note that because embedded detectors only generate reports when they detect an

attack, the generation of reports should be a relatively rare event on a normal host.

Security: It should be difficult for an attacker to disrupt the reporting mechanism, either

by inserting invalid messages, or by intercepting or modifying the messages that

detectors generate.

We considered the intra-host communication mechanisms described by

Balasubramaniyan et al. [8], but decided against them primarily because of the overhead

they require and because they are geared towards exchanging messages between separate

processes. For our purposes, we needed a mechanism for all the different detectors to pro-

duce messages that could then be accessed by a higher-level mechanism and that satisfied

the requirements given above.

We decided to implement the reporting mechanism for embedded detectors as a new

system call in OpenBSD and to base it partially on the kernel-messaging mechanism that

45

already existed in the operating system. It is implemented by a circular buffer in kernel

memory. Messages are written to the buffer using a new system call calledesp log , and

read through a new device called/dev/esplog .

This mechanism satisfies the requirements we set almost completely. It is exclusive to

the detectors because it is completely separate from all other logging mechanisms in the

host. Also, it is efficient for generating messages from detectors within the kernel because

the call happens within the kernel context, and the only operation performed is copying the

message to the buffer. When called from user-level processes, a context switch occurs.

The messages are stored inside kernel memory, so they cannot be modified by an at-

tacker unless it has root privileges, and even then, it is a complex task to locate the buffer

within the kernel memory and overwrite the messages. Furthermore, messages disappear

from the buffer when they are read, so if an intrusion detection system is constantly reading

the messages, they exist in kernel memory for only a short period of time.

With respect to access control, the/dev/esplog device provides exclusive access,

so that only one process can read it at a time. Therefore, if an intrusion detection system

opens the device and never closes it, no other processes can access the messages generated

by the detectors. Moreover, messages are never stored on a disk file or any other external

storage medium from the moment they are generated until they are read by an external

process.

This mechanism also has some drawbacks. User processes need to make a system call

(causing a context switch) when they need to generate a detector message, which may have

a negative impact on performance. Additionally, there is no fine-grained access control

in the current implementation of the reporting mechanism both for reading and for gen-

erating messages. This results in two problems. First, if an attacker manages to open

the /dev/esplog device before the intrusion detection system, he will be able to read

messages generated by the detectors. Second, any program can generate messages, so it

is possible for an attacker to generate bogus messages to interfere with authentic detector

messages.

46

Note that these drawbacks are limitations of our current implementation of the de-

tector reporting mechanism and not of the ESP architecture itself. Mechanisms such as

rate-limiting on messages and capability-based access control [109] could be employed to

address these problems in future implementations.

Access to theesp log system call and some other utility functions is provided through

a library we implemented for this purpose, calledlibesp . A full description of the func-

tions in thelibesp library is provided in Appendix B.

4.6 Methodology for implementation of detectors

We followed a consistent methodology for the implementation of all the specific detec-

tors:

1. Select a detector to implement. In the case of specific detectors, this corresponded

to selecting an entry from the CVE database. Most entries were selected at random

from the CVE to ensure coverage of different types of attacks.

2. Determine the applicability of the detector (see Section 4.7) to the implementation

platform. If the entry is determined to be non-applicable, return to step 1.

3. Obtain information about the entry, including advisories, exploit scripts, patches

and workarounds, etc. The first step was to check the references provided with the

CVE entry, followed by consulting other sources of information as described in Sec-

tion 4.3.

4. Determine if the attack corresponding to this entry would be detected by an existing

detector. In this case, mark it as “detected by” the existing detector and return to

step 1.

5. Examine the source code of the affected program, and determine where the vulner-

ability occurs. This was usually the most time-consuming step because it involved

studying and understanding the source code of the program.

6. Implement the detector. Once the vulnerability was understood the code for the de-

tector was added and the program was recompiled and tested.

47

In some cases, the new detector can be implemented by extending the functionality

of another existing detector (for example, by adding code to check for a different

but similar case). In this case, the new detector is marked as “implemented by” the

existing detector.

Generic detectors were constructed as they became apparent during the implementation

of the specific detectors. For example, after a few specific detectors were built for checking

the length of command-line arguments in different programs, a generic detector for check-

ing the length of command-line arguments in the whole system became apparent and was

implemented.

4.7 Applicability of CVE entries

The CVE contains records for vulnerabilities and attacks of a wide variety of types, in-

cluding coding errors, race conditions, configuration errors, and unsecure features of soft-

ware. Also, it includes entries affecting a wide variety of operating systems and platforms,

including multiple versions of Windows and Unix, as well as platform-specific vulnerabil-

ities for routers, switches and other devices.

Therefore, it is clear that not all CVE entries are applicable for implementation of de-

tectors in the chosen implementation platform. From the CVE entries selected at random,

we accepted as implementable those that satisfied any of the following conditions:

• The CVE entry corresponds to an attack that can be launched against an OpenBSD

system with reasonable ease. This includes, for example, attacks that are launched

using any standard Unix command. It also includes many web-based attacks because

those can be launched against any web server, independent of the platform in which

it runs.

• The CVE entry corresponds to a program that exists in the OpenBSD ports collec-

tion [104], or that can be compiled and installed on OpenBSD without extensive

porting effort.

48

• The CVE entry corresponds to a vulnerability that is clearly described and whose

operation could in theory be observed and understood on an OpenBSD system even

when the specific affected programs do not exist in OpenBSD.

These criteria allow for the selection of CVE entries corresponding to a wide variety of

operating systems and platforms.

4.8 Design and implementation considerations for detectors

We developed a few guidelines for the design and implementation of embedded detec-

tors. These guidelines help to improve the maintainability and usefulness of the detectors.

Once an intrusion is detected, it would be relatively easy for the detector to react to it,

possibly even modifying the behavior of the program under attack. However, for research

purposes, the effects of detectors modifying the behavior of a program is harder to analyze,

so we decided to use the detectors only as observers. For this reason, an early design

decision was that detectors must not interfere with the program to which they are added.

This means that they do not have to modify any data that the program uses, nor alter its

flow in any way. We refer to this guideline as “the prime directive for detectors” [102].

To make them more understandable and easier to maintain, detectors must be as short

and unfragmented as possible. This means that detectors should not perform any unnec-

essary actions. In most cases, because detectors only need to test for certain specific con-

ditions, this is possible to achieve. There are some detectors that need to keep a certain

amount of state to compare between different points in the program. In those cases detec-

tors must be composed of more than one code fragment, but they should be easily identifi-

able.

We should be careful to notice cases in which the detector already exists in the program—

for example, many modern operating systems include code to detect SYN Flood [126]

attacks—to avoid adding unnecessary code to the system.

To facilitate testing and deployment, detectors must be configurable at compile time.

This means that the inclusion of the detectors into the program must be a compile-time op-

tion. We usually achieved this in C programs using appropriate#ifdef directives, which are

set from the program’sMakefile . We decided to use different labels for each detector, so

49

they can be enabled or disabled individually. Our convention was to use macros of the form

ESPID, whereID is the identifier of the detector. For example, the code corresponding to

the detector for entry CVE-1999-0103 is surrounded by:

#ifdef ESP_CVE_1999_0103
code for the detector

#endif

The ESPCVE 19990103 macro must be defined in theMakefile for the detector to be

compiled.

Finally, to increase their effectiveness, detectors should look for exploitations of the

general vulnerability that allows the intrusion to take place. However, during our devel-

opment we have found that in some cases it is difficult to differentiate between normal

behavior of a program and its behavior under attack. This is particularly true when the

detector is being implemented in a version of the program in which the vulnerability has

been fixed. In these cases, we have resorted to some heuristics to detect attacks, such as

examining the data involved and comparing it with the data used by common attack scripts

for the corresponding entry.

4.9 Naming, testing and measuring detectors

Each detector is given a unique identifier. For detectors inspired by CVE entries, this

identifier is the corresponding CVE name. CVE names consist of the string “CVE”, the

year in which the entry was added to the database and a four-digit number separated by

dashes. For example, “CVE-1999-0016” and “CVE-2000-0279” are valid CVE names.

For other detectors (particularly generic detectors), the identifier consists of the string

“ESP” followed by a descriptive name, all in capital letters, with the words separated by

dashes. For example, “ESP-PORTSCAN” and “ESP-TMP-SYMLINK” are valid identi-

fiers.

During the initial implementation process, each detector implemented was tested by

launching the corresponding attack against the host in which the detector was implemented

and verifying that it detected the attack correctly. The trail of messages generated by the de-

tectors was monitored continuously, and when false positives occurred, the corresponding

detectors were tuned to prevent them, whenever possible.

50

An important aspect of the ESP detectors is their small size, so we were interested in

measuring them. Initially, we considered lines of code as a measure of detector size, but

discarded it because of its subjectivity. Instead, the unit we used for measuring detector size

was the “number of executable statements added to or modified in” (ESAM) a program to

implement the sensor or detector. The definition of “executable statement” was used as

provided in the Source Code Counting Rules described by Jones [72] and as implemented

by Metre [85].

For example, the detector shown in the right side of Figure 3.1 has an ESAM count of 2

because theif statement and the call tolog alert() each count as 1 executable statement.

As a measure of the “fragmentation” of each detector’s implementation, we used the

number of Blocks of Code Added or Modified (BOCAM). For example, the detector shown

in Figure 3.1 has a BOCAM count of 1, because all its code is in a single contiguous block.

4.10 Relationships between detectors

There are two main relationships that can exist between detectors. These relationships

were extracted from observations made during the implementation of the ESP prototype.

The “detected by” relationship exists between detectors A and B (in the form “A is

detected by B”) when the attack corresponding to detector A is also detected by B. This

relationship exists mainly when B is a generic detector.

When detector A is detected by B, we also say that detector B “covers” detector A.

WORKING DEFINITION 4.3: COVERAGE OF A DETECTOR

The coverage of a detector is the number of other detectors it covers.

During the implementation, we made the following observations about the “detected

by” relationship:

1. It is transitive. If A is detected by B, and B is detected by C, then A is also detected

by C.

2. Not all detectors are covered by some other.

3. A detector can be covered by more than one other detector.

51

4. Multiple detectors may be covered by a single one.

5. If detector A is covered by B, A does not have code of its own in the implementation.

The exception to this rule is when A was implemented first, in which case it will have

code of its own in addition to being detected by B.

The second main relationship we observed between detectors is “implemented by.” It

exists between detectors A and B (in the form “A is implemented by B”) when detector

A is implemented by adding code to a previously existing detector B. This relationship

usually occurred between two detectors that correspond to closely-related intrusions, so

that existing code could be extended to detect a new attack.

During the implementation of the ESP prototype, we made the following observations

about the “implemented by” relationship:

1. Not all detectors are implemented by some other.

2. Multiple detectors may be implemented by a single one.

3. A detector was never implemented by more than one other detector.

4. If detector A is implemented by detector B, there will be some code in detector B

corresponding to A. This code was normally counted as belonging to detector A. For

example, if detector A was implemented by adding two statements to the existing

code of detector B, the ESAM count of A is 2, and assuming those statements are

contiguous, its BOCAM count is 1 (A’s code block is counted additionally to the

BOCAM count of B).

4.11 Recording information about sensors and detectors

During the implementation of the ESP detectors, we found the need to document in

detail the process by which the detectors were implemented and their characteristics. Ini-

tially, free-form text files were used, but it soon became apparent that a more structured

format was necessary for later analysis. Furthermore, some characteristics of the detectors

are measurable or can be described using discrete values—for example, whether a detector

is stateless or stateful.

52

For this purpose, we developed an XML [12, 58] representation of information about

ESP detectors. This representation includes measurable and discrete information such as

the following:

• Identifier of the detector.

• Size of the detector in different units (ESAM and BOCAM).

• Type of the detector (Stateless or Stateful).

• Requirements of a detector (other detectors or programs that need to be present for

the detector to operate).

• “Detected-by” and “Implemented-by” relationships (see Section 4.10).

• Classification of data sources.

• Description of the format of the messages produced by the detector.

• Source directory in which the detector is implemented.

• Classification of the vulnerability that corresponds to the detector (when applicable).

• Operating system to which the intrusion is applicable.

It also includes free-form information about the detector, such as the following:

• Description of the detector.

• Cause of the associated vulnerability (when applicable).

• Textual descriptions of data sources and how the data is observed.

• A log of activity in the implementation of the detector.

• Miscellaneous notes and comments.

• Listing and description of files related to the implementation of the detector.

53

The format and contents of this XML representation was defined using a DTD (Docu-

ment Type Definition) defined for this purpose.

Figure 4.1 shows an example of the XML representation of a detector.

4.12 Case studies

As an initial proof of feasibility, two groups of detectors were selected for implementa-

tion: those for attacks against the Sendmail program, and those for network-based attacks.

We describe these two groups in detail as a representative sample of the issues encoun-

tered during the implementation process. Later sections present overall results and further

comments about all the detectors implemented.

4.12.1 Embedded detectors for network-based attacks

We implemented a number of embedded detectors for common network-based attacks.

We use the termnetwork-based attacksto encompass those that exploit both low-level

IP vulnerabilities and network-based vulnerabilities as described by Daniels and Spafford

[37]. In this section, we describe this implementation and the results obtained.

Detectors implemented

We chose network-based attacks because several interesting attacks of this type have

appeared over the last few years. Also, they are the type of attacks that intrusion detection

systems using network-based data collection usually detect, and our implementation shows

how effective embedded detectors can be for these attacks.

Table 4.1 lists the detectors that were implemented for network-based attacks during

the initial study phase.

In the next sections, we describe some representative attacks. We show the code of

the corresponding detectors (in many cases the code has been reformatted for space) and

explain where they have been placed within the operating system. We will see that detectors

are short and simple, yet provide advanced detection capabilities.

The lines of code added or modified by a detector have been highlighted in each code

section. The detectors have been wrapped in#ifdef directives and in anif clause, so

they can be disabled both at compile time and at run time. We explored the possibility of

54

<?xml version="1.0" standalone="no"?>
<!DOCTYPE ESP-Component SYSTEM "ESP-Component.dtd">

<ESP-Component type="sensor_detector">
<ID type="CVE">CVE-1999-0164</ID>
<Description>

A race condition in the Solaris ps command allows an attacker to
overwrite critical files.</Description>

<Detector-Info>
<detector-type>Stateless</detector-type>
<detected-by>ESP-SYMLINK-CHOWN</detected-by>
<detected-by>ESP-SYMLINK-CHMOD</detected-by>
<detected-by>ESP-TMP-SYMLINK</detected-by></Detector-Info>

<Cross-Ref>ESP-SYMLINK-CHOWN</Cross-Ref>
<Notes>

<item> This was a well-known problem in old versions of
Solaris that allowed changing the ownership of arbitrary
files to root. The problem was a predictable filename in
/tmp (coupled with bad permissions in /tmp that allowed
any user to remove other users’ files) followed by a
chown() of that filename to root. By removing that file
and creating it as a symlink to another file after the
creation but before the chown(), it was possible to change
any file to root.</item></Notes>

<Files>
<file>

<file-name>exploit</file-name>
<file-description>

Exploit program</file-description></file></Files>
<Operating-System>

<OS-name>OpenBSD</OS-name>
<OS-version>2.7</OS-version></Operating-System>

<Operating-System type="vulnerable">
<OS-name>Solaris</OS-name>
<OS-version>2.3</OS-version>
<OS-version>2.4</OS-version>
<program>ps</program></Operating-System>

<Source-Directory type="vulnerable">/solaris/usr/bin/ps
</Source-Directory>

<Classification type="Krsul">2-7-1-4</Classification>
</ESP-Component>

Figure 4.1. Example of the XML representation of detector information.

55

Table 4.1
Summary of network-related detectors that were implemented during the initial study
phase. All but CVE-1999-0103 exist in the kernel code. The Type column indicates

whether the detector is stateful or stateless as defined in Section 3.1.3. The ESAM and
BOCAM columns indicate the sizes as defined in Section 4.9.

ID Description Type ESAM BOCAM

CVE-1999-0016 Land Stateless 2 1
CVE-1999-0052 Teardrop Stateless2 1
CVE-1999-0053 TCP RST DoS Stateless2 1
CVE-1999-0077 TCP sequence number prediction Stateless2 1
CVE-1999-0103 Echo-chargen connections Stateless8 4
CVE-1999-0116 TCP SYN flood Stateless2 1
CVE-1999-0128 Ping of death Stateless3 1
CVE-1999-0153 Win nuke Stateless 3 1
CVE-1999-0157 Pix DoS Stateless 2 1
CVE-1999-0214 ICMP unreachable messages Stateless2 1
CVE-1999-0265 ICMP redirect messages Stateless8 1
CVE-1999-0396 NetBSD TCP race condition Stateful 3 2
CVE-1999-0414 Linux blind spoofing Stateless3 1
CVE-1999-0513 Smurf Stateful 22 5
CVE-1999-0514 Fraggle Stateful 12 5
ESP-PORTSCAN Port scanning Stateful151 9

56

integrating the run-time control variables to the kernel parameters mechanism available in

OpenBSD through which some kernel parameters can be modified at run time. The ability

to disable the detectors at runtime may not be desirable in a production system because

it offers the possibility for an attacker to disable the detectors if he manages to obtain

sufficient privileges in the system. However, for the purposes of testing, the capability of

enabling and disabling detectors at runtime was considered appropriate.

Stateless Detectors

Twelve of the 16 detectors in Table 4.1 are stateless. Those detectors test if an attack

condition is met and call the alert mechanism. They use information from the network stack

and are placed within its execution path. An example of this type of attack is the Land [18]

attack (CVE-1999-0016). It consists of a TCP SYN packet sent to an open port with the

source address and port set to destination address and port. OpenBSD filters those packets

when processing SYN packets in the TCPLISTEN state and drops them. The detector

exploits this and is placed before the packet drop, so it is effectively only a single statement

(with additional code for detector management).

case TCPS_LISTEN: {
. . .

if (ti->ti_dst.s_addr == ti->ti_src.s_addr) {
/* ESP */
#ifdef ESP_CVE_1999_0016

if (esp.sensors.land)
esp_logf("CVE-1999-0016: LAND attack \n");

#endif
goto drop;

}
. . .

}

The CVE-1999-0103 (Echo-chargen denial-of-service attack [17]) detector was imple-

mented within theinetd [143] program and not in the kernel. Also, it is longer than other

detectors because it has to query additional information that is not readily available outside

the kernel.

In this group of detectors we found the first instance of an “implemented-by” relation-

ship. The PIX DoS attack [24] (CVE-1999-0157) exploits the same vulnerability (failure

57

to handle a special case of overlapping IP packets) as Teardrop [18] (CVE-1999-0052) but

with a variation to bypass a PIX firewall. In this case, the ESAM count indicates the num-

ber of statements added to or modified in CVE-1999-0052 to implement the detector for

CVE-1999-0157, and the BOCAM count of 1 indicates that those statements are contigu-

ous.

SYN flooding [126] is a denial-of-service attack based on exhaustion of the resources

allocated in a host for half-open TCP connections. The detector for SYN flooding was

implemented as stateless. OpenBSD does resource allocation for half-open connections and

drops old connections after a threshold has been reached. The detector triggers when such

a connection is dropped. This shows an advantage of embedded detectors: they can use the

defense mechanisms of the operating system itself and combine them with detection.

Other attacks are ICMP unreachable messages (CVE-1999-0214) and ICMP redirects

(CVE-1999-0265), both of which allow an attacker to cause a denial-of-service attack by

faking ICMP control messages. The problem is that those faked ICMP messages may

be indistinguishable from legitimate messages created by hosts at the end points of the

connection or by interior routers. These type of attacks are inherent to the design of TCP/IP.

OpenBSD tries to protect itself from malicious messages with extensive checks against its

local state and we placed the detectors after those, i.e. that packets that are accepted by

OpenBSD will not raise an alarm, while rejected will. Nevertheless cleverly forged packets

still may exploit those vulnerabilities.

Stateful Detectors

Stateful detectors accumulate data about events that indicate attacks. In some of our

detectors, a separate timer routine reads these data and triggers an alarm if a threshold has

been met. Two typical examples are the Smurf and Fraggle [19, 69] attacks. They try to

flood the host with packets of a certain type and make it unavailable to its users.

Those attacks rely on traffic amplification mechanisms. Traffic amplification is based

on mechanisms that generate a response significantly larger than the request that originates

it. This enables a single attacker to generate the amount of traffic necessary to exceed the

victim’s capacity. Stateless detectors may detect the packets that use those mechanisms to

58

generate the attack. However, often the attacked site and the amplifying site are different,

so a different detector for the victim host is necessary. Identifying the vulnerability at the

amplifying site can assist in tracing the attack.

The Smurf attack [19] sends ICMP ECHORESPONSE packets. Those do not differ

from legitimate packets (for example, in response to aping command [145]) except that

there is no program expecting them. For implementing the detector, we assumed the se-

mantics of theping program, that stores its Process ID in the ICMP ID field to identify its

replies. Based on that technique, we store the Process ID of all ICMP raw sockets in the

socket data structure when they are created:

case PRU_ATTACH:
. . .

/* ESP */
#ifdef ESP_CVE_1999_0513

if (esp.sensors.smurf && ((long) nam) == IPPROTO_ICMP)
so->so_pgid = curproc->p_pid;

#endif

We check this information at arriving ICMP echo replies and increase a counter for un-

requested echo replies if there is no matching socket (this is done in theesp smurf()

function, not shown).

case ICMP_ECHOREPLY:
/* ESP */
#ifdef ESP_CVE_1999_0513

if (esp.sensors.smurf) {
if (esp_smurf(ip, icp))

goto freeit;
goto raw;

}
#endif

The technique used above shows another advantage of embedded detectors: additional

information can be made available when necessary for the purposes of detection.

The alarm for Smurf is rate-limited. A legitimate use ofping will probably be inter-

rupted when there are still echo reply packets in the network to be delivered to the host, and

those packets should not raise an alarm although they do match the signature. A network

layer timer that runs for three seconds examines the counter and raises an alarm only if it

exceeds a threshold.

59

Port scanning [52] is a probing technique used to determine what ports are open on a

host, and is commonly performed as an exploration phase by an attacker. For this reason,

although port scans themselves are not attacks, we consider it desirable to detect them. We

implemented a port scan detector that reacts to all known types of port scanning techniques

(including stealth and slow scans) by using the state of the network stack. Also, it has more

advanced monitoring and reporting capabilities because it reports multiple probes as one

scan and identifies its type.

The NetBSD race attack detector (CVE-1999-0396) is a special case of the port scan

detector and uses its reporting routine. For this reason, CVE-1999-0396 is “detected-by”

ESP-PORTSCAN.

A detailed description of all the detectors for network-based attacks is available [75].

Testing the detectors

A test suite of exploit programs was assembled to test the detectors. The exploit pro-

grams were acquired preferably from the same sources that published the vulnerabilities

when they made them available. If they were not available or not working, we wrote our

own exploits according to the descriptions. The test suite was run supervised from a remote

machine on the same local area network (LAN) and all attacks were detected reliably.

An independent tester ran the same set of attacks. The attacks were run over the campus

network, with different network technologies and possibly even filtering in between. The

results were that only a small number of attacks arrived at the target. This experience shows

that most attacks are of rather low quality and are dependent on the network environment.

The packet log shows that all received attacks were detected. The test was repeated from a

machine on the same LAN and the results match those of the supervised test.

In the testing period the host reported some attacks not generated as a controlled exper-

iment, notably port scans. To verify their correctness, they were compared to the packet

log and all could be verified as real events.

60

4.12.2 Embedded detectors for sendmail attacks

Sendmail [30] is the most widely used mail-delivery agent on Unix machines. A num-

ber of security problems have been encountered in sendmail over the years, and many of

them can still be found in systems connected to networks [23].

Sendmail is a complex user-level process with multiple clearly identifiable vulnerabili-

ties in its past. For this reason, it was an ideal candidate for the implementation of detectors

outside the kernel.

Detectors implemented

We implemented the detectors in version 8.10.1 of sendmail which is the version in-

cluded with OpenBSD 2.7. During the initial test phase, 11 sendmail detectors were im-

plemented, and they are summarized in Table 4.2.

In the next sections we will describe in more detail some of these detectors. As with

the network detectors described in Section 4.12.1, the sendmail detectors are surrounded

by #ifdef statements that allow to disable or enable them individually at compile time. No

runtime mechanism exists for disabling or enabling these detectors.

Stateless detectors

Seven of the 11 sendmail detectors implemented in this phase were stateless. Most

of the vulnerabilities to which these detectors correspond have been fixed in the newer

versions of sendmail. In some cases the new code specifically looks for and avoids the

corresponding attacks. In those cases, the detectors consisted of simple checks or only the

calls to the reporting mechanism. This is the case for most of the detectors that consist of

only one or two executable statements.

As an example, we present the detector for CVE-1999-0096 corresponding to the use of

the “decode” alias to overwrite arbitrary files on a system. This alias is no longer enabled

by default in new versions of sendmail, but because there are still old versions of send-

mail in use on the Internet, it is important to detect attempts to use those aliases. In this

case, the detector specifically looks for mail sent to thedecode address or the equivalent

uudecode address:

61

Table 4.2
Summary of sendmail-related detectors implemented during the initial study phase. All
but CVE-1999-0057 exist in the sendmail program itself. The Type column indicates

whether the detector is stateful or stateless as defined in Section 3.1.3. The ESAM and
BOCAM columns indicate the sizes as defined in Section 4.9.

ID Description Type ESAM BOCAM

CVE-1999-0047 Buffer overflow vulnerability in
sendmail 8.8.3/8.8.4

Stateful 101 71

CVE-1999-0057 Multiple vendor vacation(1) vulnera-
bility

Stateless 2 1

CVE-1999-0095 Debug command in sendmail Stateless1 1
CVE-1999-0096 Sendmail decode aliases can be used

to overwrite files
Stateless 6 2

CVE-1999-0129 Sendmail group permissions vulner-
ability

Stateless 2 1

CVE-1999-0130 Sendmail Daemon Mode vulnerabil-
ity

Stateful 3 3

CVE-1999-0131 Sendmail GECOS buffer overflow
and resource starvation

Stateless 1 1

CVE-1999-0204 Execution of root commands using
malformed identd responses

Stateful 4 2

CVE-1999-0206 MIME buffer overflow in sendmail
8.8.0 and 8.8.1

Stateful 5 8

CVE-1999-0478 Denial-of-Service attack using ex-
cessively long headers

Stateless 1 1

CVE-1999-0976 Sendmail allows users to reinitialize
the alias database, then corrupt the
alias database by interrupting send-
mail

Stateless 1 1

1 These counts include a subroutine that is shared with CVE-1999-0206 that consists
of 4 executable statements.

62

. . .
a->q_next = al;
a->q_alias = ctladdr;
#ifdef ESP_CVE_1999_0096
{ if (a != NULL && a->q_user != NULL) {

if((strcmp(a->q_user,"decode")==0)||
(strcmp(a->q_user,"uudecode")==0)) {

esp_logf("CVE-1999-0096: name=’%s’ \n", a->q_user);
}

}
}
#endif
. . .

Note that this detector works even if the addresses it looks for do not exist on the system

and shows one of the advantages of embedded detectors: they can look for attempts to

exploit vulnerabilities that do not exist on the host being monitored.

Stateful detectors

Stateful detectors are more complex than stateless ones. In the simplest cases, the

detector has to collect some piece of information at an early stage before being able to

make a decision later on. For example, the detector for CVE-1999-0130 needs two pieces

of information to determine that an attack is occurring: the sendmail program needs to be

run under the namesmtpd and the user that invoked it must not beroot. Because these two

pieces of information are available at different points in the program, the detector is split in

two code segments. The first one sets a flag when sendmail is being run assmtpd:

#ifdef ESP_CVE_1999_0130
bool esp_RunAsSmtpd = FALSE;

#endif
. . .

else if (strcmp(p, "smtpd") == 0) {
OpMode = MD_DAEMON;

#ifdef ESP_CVE_1999_0130
esp_RunAsSmtpd = TRUE;

#endif
}

The second code segment is executed in the same block in which sendmail already gener-

ates an error message when “daemon mode” is requested by a non-root user, and generates

the corresponding alert:

63

usrerr("Permission denied");
#ifdef ESP_CVE_1999_0130

if (esp_RunAsSmtpd) {
esp_logf("CVE-1999-0130: user=%d \n", RealUid);
}

#endif
finis(FALSE, EX_USAGE);

A more complex example of a stateful detector is the one for CVE-1999-0047, which

detects attempts to exploit a buffer overflow in the MIME-decoding subroutine of sendmail

8.8.3/8.8.4. This detector is interesting because it illustrates how in some cases it is difficult

to differentiate between normal and intrusive behavior.

Under normal circumstances, themime7to8() function of sendmail uses a fixed-

length buffer that gets repeatedly filled and flushed as necessary while decoding a MIME

message. In the vulnerable versions, a typo in the code (checking the wrong variable to

see if the buffer was already full) prevented the buffer from being flushed, allowing the

program to keep writing past the end of the buffer and causing the buffer overflow.

Once the problem was fixed, the buffer is correctly flushed every time it fills. However,

it is impossible in the fixed code to detect an attack against this vulnerability by looking at

the behavior of the program because both regular and attack data behave exactly the same:

they fill the buffer, which gets flushed, and the process repeats as many times as necessary.

Therefore, to build this detector we resorted to heuristics. In this particular case, we

look at the data that are being written into the buffer and compare them against the data

used by the most common exploit script that was circulated for this vulnerability. This is

done in the functionesp mime buffer overflow() :

#ifdef ESP_CVE_1999_0047
char
esp_mime_buffer_overflow(char c, int filled, char *msg) {

char egg[]=
" \xeb \x37 \x5e

(more binary data omitted) "
static int pos=0;
static int count=0;
if (esp_match_char(egg, c, &pos, &count, 0x00, 0) && filled) {

esp_logf("%s \n", msg);
pos=0;

64

}
return c;
}
#endif

This subroutine does a character-by-character matching against the binary “egg” used by

the exploit script and returns success when a complete match is found. In a more complex

version of the detector, a fuzzy or partial match could be done, or the search could look for

more than one binary string in the data.

From themime7to8() function, theesp mime buffer overflow() function is

called every time a character is inserted in the decoding buffer:

*fbufp = (c1 << 2) | ((c2 & 0x30) >> 4);
#ifdef ESP_CVE_1999_0047

esp_mime_buffer_overflow(*fbufp, esp_filled, "CVE-1999-0047");
#endif
. . .

An additional heuristic used to signal an attack is that the decoding buffer must have

been filled and flushed at least once when the binary string is encountered (otherwise a

buffer overflow would not have occurred in the vulnerable code), so the detector also keeps

track of how many times the buffer has been filled:

. . .
putxline((char *) fbuf, fbufp - fbuf, mci, PXLF_MAPFROM);
fbufp = fbuf;

#ifdef ESP_CVE_1999_0047
esp_filled++;

#endif
}

This detector keeps track of several pieces of information available only inside the

sendmail code, which shows the advantage that embedded detectors have by being able to

access internal information of the program. This detector also shows one of the drawbacks

of the embedded detectors approach: when the vulnerability for which the detector is built

no longer exists in the code, it can be difficult to differentiate between normal behavior of

the program and behavior under attack. This problem is common to all existing signature-

based intrusion detection systems.

65

Testing the detectors

Each detector was tested using the exploit scripts available for each vulnerability. In

most cases the exploit scripts were available from the same sources in which the problem

was described, but in others we had to develop our own exploits. Each detector correctly

signaled the attacks when they were launched using the exploit scripts.

4.13 Detectors implemented

After the implementation of the two case studies described in Section 4.12, the imple-

mentation continued by drawing random entries from the CVE, and implementing detectors

for those that were deemed applicable according to the criteria set in Section 4.7. In to-

tal, 291 CVE entries were examined, of which 161 were not applicable, resulting in the

implementation of 130 specific detectors. During this process, 20 generic detectors and 3

“pure” sensors (that collect and report information of some kind, but do not perform any

detection) were designed and implemented, resulting in a total of 153 sensors and detectors

implemented. They are listed in Tables A.1 and A.2.

In this section we present some information about the results of the implementation.

4.13.1 By vulnerable platform or program

Because detectors can be used to look for both successful and unsuccessful attacks,

during the implementation process it was possible to build detectors for attacks that are

specific for platforms other than OpenBSD, or that existed in multiple platforms and oper-

ating systems.

As mentioned in Section 3.1.4, this offers the possibility of building a “universal hon-

eypot.” However, this is not the main purpose of ESP. By building detectors for different

attacks against multiple platforms, we show that the ESP architecture could be successfully

applied on almost any computing platform, and aids us in gaining information about the

types of vulnerabilities that are commonly responsible for computer security problems.

Figure 4.2 shows the distribution of detectors built according to the original vulnerable

platform or program. This graph does not show the generic detectors, which are able to

detect attacks possibly related to multiple platforms.

66

0 5 10 15 20 25 30

Windows
Solaris

(multiple) sendmail
Irix

Linux
(multiple) TCP

FreeBSD
(multiple) kernel

(multiple) KDE
(multiple) IP

(multiple) inetd
(multiple) ICMP

UnixWare
NetBSD

AIX
(multiple) StarOffice

(multiple) ssh
(multiple) Kerberos5

(multiple) FastTrack Web Server
(multiple) cfingerd

SunOS
SCO OpenServer

OpenBSD
Nortel Networks Nautica Router

HP-UX
Cisco PIX

Cayman
BeOS

Axis Network Document Server
Ascend CascadeView

(multiple) XFree86
(multiple) WWWBoard

(multiple) vi
(multiple) vacation

(multiple) UDP
(multiple) test-cgi

(multiple) Super
(multiple) squid
(multiple) rsaref

(multiple) rlogind
(multiple) RealServer

(multiple) rdist
(multiple) procmail

(multiple) PHP
(multiple) NCSA httpd

(multiple) MySQL
(multiple) lpr

(multiple) jj
(multiple) httpd
(multiple) htdig

(multiple) FormMail
(multiple) Delegate

(multiple) crond
(multiple) CDE

(multiple) AntiSniff
(multiple) amd

(multiple) Allaire Spectra

P
la

tfo
rm

 o
r p

ro
gr

am

Number of specific detectors

Figure 4.2. Distribution of specific detectors by vulnerable platform. This indicates the
platform or program to which the intrusion for which the detector was implemented was
applicable. Entries marked as “(multiple)” correspond to programs that exist in several

operating systems.

67

4.13.2 By implementation directory

All the detectors were implemented inside the standard OpenBSD source code directory

(/usr/src/) or inside the corresponding section of the OpenBSD ports collection (stored

in directory /usr/ports/). We recorded the specific directory in which each detector

was implemented, and the histogram in Figure 4.3 shows the overall counts. The graph

shows both the number of generic and specific detectors that were implemented in each

directory. Not all the detectors have an implementation directory. In particular, detectors

that do not have an implementation of their own because they are covered by others do not

appear in this table.

Figure 4.3 clearly shows that there are four major individual contributors: the Apache

HTTP daemon (/usr.sbin/httpd), the networking section of the OpenBSD kernel

(/sys/netinet), the general section of the OpenBSD kernel (/sys/kern), and the

sendmail program (/gnu/.../sendmail/). These four directories account for more

than 70% of the detectors. Whilehttpd has the largest contribution of specific detectors,

/sys/kern has the largest amount of generic ones.

The large representation of detectors in thesendmail andnetinet directories could

be partially attributed to the intentional selection of these types of detectors for the initial

test runs. However, these two classes were selected precisely for the large number of attacks

that have occurred in them over the years. At least for the network attacks, the number of

detectors increased considerably even after the test phase.

4.13.3 By size

One of the distinguishing characteristics of the ESP architecture is its ability to perform

effective detection with little overhead on the system, both in terms of CPU and memory

usage. Because the detectors exist at the point in the programs where the information

necessary for detection is readily available, they can be small in size.

As described in Section 4.9, we used two metrics for the size and fragmentation of the

detectors: Executable Statements Added or Modified (ESAM) and Blocks of Code Added

or Modified (BOCAM), respectively. Figures 4.4 and 4.5 show the distribution of detector

sizes in these two units. We can see that in both measurements, the distribution is heavily

68

0 5 10 15 20 25 30 35

/usr.sbin/httpd

/sys/netinet

/sys/kern

/gnu/usr.sbin/sendmail/sendmail

/X11

/lib/libc/gen

/lib/libc/net

/usr.bin/ssh

/usr.sbin/cron

/usr.sbin/inetd

/sbin/dip

/usr/ports/databases/mysql

/usr/ports/mail/procmail

/usr/ports/security/antisniff

/usr/ports/security/rsaref

/usr/ports/x11/kde

/bin/mt

/libexec/fingerd

/libexec/ftpd

/libexec/rlogind

/libexec/telnetd

/libexec/tftpd

/sbin/ping

/sys/ufs

/sys/vm

/usr.bin/man

/usr.bin/vacation

/usr.sbin/amd

/usr.sbin/arp

/usr.sbin/lpr/lpr

/usr.sbin/named/nslookup

Im
pl

em
en

ta
tio

n
di

re
ct

or
y

Number of detectors

Generic
Specific

Figure 4.3. Distribution of detectors by implementation directory. For space
considerations, the/usr/src prefix has been dropped on all entries except those within

/usr/ports .

69

0

5

10

15

20

25

30

35

40

45

1 4 7 10 13 16 19 22 25 28 31 34 37 40 … 151

Executable statements added or modified

N
um

be
r o

f d
et

ec
to

rs
Specific
Generic

Figure 4.4. Distribution of detector sizes (ESAM metric).

biased toward the low end of the scale, with 78% of the detectors being 4 ESAM or less

in size. The majority of the detectors are small in size and non-fragmented. Figure 4.6

combines the ESAM and BOCAM measurements and shows the count of detectors against

each combination of ESAM and BOCAM values. This graph confirms the small-size, non-

fragmented nature of most detectors.

All the detectors implemented account for 507 ESAM, resulting in an average detector

length of 5.57 ESAM (this counts only the 91 detectors that have an actual implementa-

tion; the average counting all the detectors is 3.31 ESAM). All the detectors are under 50

ESAM in size, except for ESP-PORTSCAN. This is the most complex of the detectors im-

plemented: it includes a sensor that collects information about suspicious packets received

by the host and periodically traverses the list and produces the port-scanning reports. The

same sensor is used by other detectors which make a decision based on packets received by

the monitored host.

70

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9

Blocks of code added or modified

N
um

be
r o

f d
et

ec
to

rs
Specific
Generic

Figure 4.5. Distribution of number of contiguous code blocks per detector (BOCAM
metric).

These results show that embedded detectors can be added to existing programs with

few modifications to the code, and that they do not add significantly to the program they

monitor in terms of size.

4.13.4 By type

By the way they operate, detectors can be classified as stateless or stateful. Figure 4.7

shows the number of each type that was implemented. We can see that the number of state-

less detectors (both specific and generic) is considerably larger than that of stateful ones.

This is a good result because stateful detectors usually are larger and more complex than

stateful ones, as evidenced by the average ESAM count for stateful detectors being 19.14,

whereas it is 2.44 for stateless detectors. Even without counting ESP-PORTSCAN (which

single-handedly contributes 151 ESAM to the count), the average for stateful detectors is 9

ESAM.

Stateful detectors are individually more powerful than stateless ones, but the simplicity

and small size of the stateless detectors makes it possible to put them anywhere in the

71

7

4

4 3

2

2 2

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1 1

15 36

0

1

2

3

4

5

6

7

8

9

10

1 10 100 1000

Executable Statements Added or Modified

B
lo

ck
s

of
 C

od
e

A
dd

ed
 o

r M
od

ifi
ed

Figure 4.6. Graph of detector sizes by combination of the ESAM and BOCAM metrics.
Bubble size represents the number of detectors that have each combination of parameters.
The horizontal axis has been made logarithmic to better display the different values at the

lower end of the scale.

72

0 20 40 60 80 100 120 140 160

Stateless

Stateful

T
yp

e
of

 d
et

ec
to

rs

Number of detectors

Generic

Specific

Figure 4.7. Distribution of detectors by type.

monitored component (even inside critical sections), giving the ESP architecture the ability

to perform its detection functions without the need to keep as much state as traditional

intrusion detection systems.

4.13.5 By data sources used

During the implementation, we recorded the sources from which each detector obtains

information. These numbers are summarized in Figure 4.8. The types of data sources are

defined as follows:

Network data: Data obtained from the network or from a network connection.

Examples: contents of TCP packets received by the host; contents of ARP requests

being propagated in the network.

System state: Information about the current internal state of the system.

Examples: list of processes currently running on the system; number of currently

open network connections.

User-provided data: Data provided by the user of a program.

Examples: length of command-line arguments given to a program; contents of a

configuration file created by the user.

File system state: Information about the current state of the file system.

73

0 10 20 30 40

Network data

System state

User-provided data

File system state

Application data

Program state

T
yp

e
of

 d
at

a
so

ur
ce

Number of detectors

Generic

Specific

Figure 4.8. Distribution of detectors by type of data sources used. Some detectors use
more than one data source.

Example: permissions of a file, existence of symbolic links in a path.

Application data: Information about data being used internally by a program.

Examples: length of an internal buffer, return value of a library function call.

Program state: Information about the current state of a program.

Examples: number of times an action has been attempted, rate of requests of a certain

service.

The numbers in Figure 4.8 show that at least in our implementation, a large fraction of

attacks involve data coming off the network, which is a reflection of the large number of

network-based attacks that exist (and which is also reflected in the large number of detectors

in the HTTP daemon and the networking layers, as shown in Figure 4.3). Also interesting

is the large number of detectors with “System State” data sources. This is an indication

that many problems are caused by programs not checking the conditions on the system

(for example, the length of a user name or an environment variable) before performing an

action. The third largest group is “User-provided data,” which corresponds to detectors for

74

attacks that possibly could be prevented if the programs checked user input for validity (for

example, command-line arguments) before using it. Although these comments are based

only on the numbers encountered in our implementation, they intuitively correspond to the

causes of most vulnerabilities seen in production systems.

4.13.6 By vulnerability type

Each detector is also classified according to the type of vulnerability that made the

corresponding intrusion possible. For this classification we used the taxonomy of software

vulnerabilities proposed by Krsul [78]. The taxonomy was used as presented originally:

only category 2 (“Environmental assumptions”) is expanded into sub-levels, and categories

1 (“Design”), 2 (“Coding faults”) and 4 (“Configuration errors”) are considered only at their

top level. Figure 4.9 shows the distribution of detectors according to this classification. All

the categories used in this dissertation are listed in Appendix C.

We can see that the largest number of detectors correspond to classes 2-2-1-1 (User

Input — Content — is at most x), and 2-5-1-1 (Command Line Parameters — Content —

length is at most x) which correspond to buffer overflow problems. Also, note that eight of

the generic detectors have a classification of “n/a,” which indicates that these detectors do

not correspond to a specific type of vulnerability, but that can detect intrusions that exploit

multiple types of vulnerabilities.

Additions to the taxonomy

The specific instantiation of the taxonomy presented by Krsul [78] was developed using

the data from the vulnerability database developed in his work. When assigning categories

to the ESP detectors implemented, we encountered some of them that could not be assigned

to any of the existing categories. For this reason, we created some new categories as ex-

tensions to the original classification (this type of extensions was predicted by Krsul). All

the new categories belong to the top-level category 2 (“Coding faults”) and are described

below.

(2-4-1-4) Network stream — Content — matches a regular expression. Vulnerabilities

in this class correspond to those in which the programmer assumed that the data

75

0 5 10 15 20 25

2-2-1-1
2-5-1-1

4
2-12-2-2
2-12-2-1

3
1

n/a
2-3-2-1
2-6-1-1
2-2-1-3
2-7-1-5

unknown
2-12-1-2

2-2-1-4
2-10-2-4
2-10-2-1
2-12-1-1
2-10-2-2

2-2-1-2
2-10-4-1
2-10-2-3
2-10-1-1

2-9-1-3
2-7-2-3
2-7-2-1
2-7-1-6
2-7-1-4
2-7-1-2
2-4-2-1
2-4-1-4
2-3-2-3
2-1-4-1

V
ul

ne
ra

bi
lit

y
cl

as
si

fic
at

io
n

Number of detectors

Generic

Specific

Figure 4.9. Distribution of detectors by type of vulnerability according to the taxonomy
proposed by Krsul [78]. See Appendix C for a listing of the categories.

76

read from a network stream would always match a certain pattern or have a certain

structure.

(2-4-2-1) Network stream – Socket — is the same object as x. In this case, we identi-

fied a new attribute (2-4-2: Socket) as well as a new assumption (“is the same object

as x”). Vulnerabilities in this class correspond to those in which the programmer

assumed that two distinct operations on a network socket will access the same con-

nection, and that the socket will be available.

(2-7-1-6) File — Name — length is at most x. Vulnerabilities in this correspond to those

in which the programmer assumed that path names would always be under a certain

length.

(2-10-1-1) Network IP packets — Source address — is different than destination ad-

dress. Corresponds to vulnerabilities caused by the programmer assuming that the

source and the destination address on an incoming packet are always different. Note

that the attribute of this class (source address) was one of the attributes predicted

by Krsul in his work.

(2-10-2-2) Network IP packets — Data segment — is a proper fragment. Corresponds

to vulnerabilities caused by the programmer assuming that a packet containing an IP

fragment would be properly formed.

(2-10-2-3) Network IP packets — Data segment — corresponds to a fully established

connection. Corresponds to vulnerabilities caused by the programmer assuming that

incoming packets correspond to a connection that has already been completed suc-

cessfully (this is not always the case, particularly during the initial TCP handshake).

(2-10-2-4) Network IP packets — Data segment — length is at most x. Vulnerabilities

caused by the programmer assuming that the contents of a packet will not exceed a

certain length.

77

(2-10-4-1) Network IP packets — TCP sequence number — is in proper sequence.

This is another case of a new attribute (TCP sequence number). Corresponds to

vulnerabilities caused by the programmer assuming that incoming packets will have

the correct sequence number.

These categories are minor additions to the original taxonomy because most of them

were new assumptions about previously identified attributes. As can be seen in Figure 4.9,

none of these categories had a large representation in the ESP detectors implemented, with

2-10-2-4 having the largest number of instances (3 detectors).

4.13.7 By detection and implementation rates

As described in Section 4.10, some detectors are “detected by” others, and some detec-

tors are “implemented by” others. These relationships are interesting because they indicate

the capabilities of the detectors that implement or cover others.

Figure 4.10 shows the distribution of detectors by their detection rate, as defined in Sec-

tion 4.10. We can see that almost all the detectors in the list are generic detectors. Of the

top six detectors, two (ESP-ARGS-LEN and ESP-LONGURL) correspond to buffer over-

flow vulnerabilities, two (ESP-TMP-SYMLINK and ESP-SYMLINK-OPEN) correspond

to race conditions or filename-binding vulnerabilities, and one (ESP-URI-DOTDOT) cor-

responds to filename permissions checking vulnerabilities.

Notice that the only detector that covers other generic detectors is ESP-TMP-SYMLINK.

This detector is a generalization of ESP-SYMLINK-OPEN, ESP-SYMLINK-CHMOD,

ESP-SYMLINK-CHOWN and ESP-SYMLINK-CONNECT; therefore it covers the func-

tionality of all four of them.

Figure 4.11 shows the two detectors that implement others: ESP-BADURLS (a generic

detector that implements multiple detectors for web-based attacks) and CVE-1999-0052

(which implements CVE-1999-0157, corresponding to a similar attack).

4.14 Auxiliary components

In addition to the detectors themselves, there were two major components of the ESP

implementation: the logging mechanism for the detectors, and the ESP library, both de-

78

0 5 10 15 20

ESP-TMP-SYMLINK

ESP-ARGS-LEN

ESP-SYMLINK-OPEN

ESP-URI-DOTDOT

ESP-LONGURL

ESP-ENV-LEN

ESP-TCP-DROPPED-PACKETS

ESP-LONGICMP

ESP-LONGGECOS

ESP-FTP-CMD-OVERFLOW

ESP-BADMODE-ROOT-FILE

ESP-SYMLINK-CONNECT

ESP-SYMLINK-CHOWN

ESP-SYMLINK-CHMOD

ESP-SMTP-CMD-OVERFLOW

ESP-PORTSCAN

ESP-GETNAMEINFO

ESP-FILE-INTEGRITY

CVE-1999-0746

CVE-1999-0323

CVE-1999-0052

D
et

ec
to

r

Coverage

Generic
Specific

Figure 4.10. Distribution of detectors by coverage, as defined in Section 4.10.

0 5 10 15 20 25

ESP-BADURLS

CVE-1999-0052

D
et

ec
to

r

Number of detectors it implements

Generic

Specific

Figure 4.11. Distribution of detectors by number of detectors they implement, as defined
in Section 4.10.

79

Table 4.3
Information about the implementation of the logging mechanism, the ESP library, and
auxiliary code for the networking detectors. The/usr/src prefix is omitted from the

implementation directories. The ESP library does not have a BOCAM count because it is
implemented as an independent component.

Component ESAM BOCAM Implementation directory

Logging mechanism 139 20 sys/kern , sys/arch
ESP library (libesp) 135 n/a lib/libesp , /lib/libc
Networking code 21 1 sys/netinet

scribed in Section 4.5. Also, code was added to the networking layers of the OpenBSD

kernel to provide support functions for some of the sensors and detectors that exist in that

layer.

Table 4.3 shows some information about these three auxiliary components. We can see

that the whole ESP logging mechanism (which adds the newesp log system call, plus

a new device file/dev/esplog from which messages can be read) is shorter than the

ESP-PORTSCAN detector (see Table A.2). The ESP library, which includes 12 support

functions plus the access point for theesp log system call, has a similar size at 135

ESAM.

Some parts of the logging mechanism are in the architecture-specific portions of the

kernel (sys/arch). This is primarily for early initialization of the memory needed by

the circular buffer used in the logging mechanism. The rest of the code is architecture-

independent. For this reason, the logging mechanism could be ported with relative ease

to other versions of OpenBSD, and possibly to other BSD versions of Unix (such as

NetBSD [94] and FreeBSD [50]).

The ESP library is implemented mostly as a separate library, except for the interface

to theesp log() system call and theesp logf() function. These were added to the

standard C library (libc) to make it possible for other libraries to access them and to

allow detectors in any program to generate ESP messages without having to link against an

additional library (unless the additional functionality is needed).

80

The support code for networking detectors adds some initializations and timers used for

bookkeeping.

4.15 Comments about the ESP implementation

The ESP implementation, as described in this chapter, shows the feasibility of building

an intrusion detection system based on the ESP architecture. With comparatively little

code, it was shown possible to implement an intrusion detection system with considerable

detection capabilities.

As an example, the generic (kern subdirectory) and network (netinet subdirectory)

portions of the OpenBSD 2.7 kernel consist of roughly 88,830 raw lines of C code, includ-

ing comments, blank lines and preprocessor directives1. All the ESP detectors that have

been implemented in those sections of the kernel total approximately 1,340 lines of code

(again, including comments, blank lines and preprocessor directives), which corresponds

to 1.5% of the size of the kernel code, yet detect 54 specific attacks, and include 9 generic

detectors.

Because the purpose of this ESP implementation was to explore the capabilities and

issues related to the architecture, we implemented some detectors that would probably not

be needed in a production system, such as detectors for attacks that do not correspond to

the implementation architecture. However, by doing so we demonstrated that the concepts

of the ESP architecture can be used on a wide variety of platforms to detect a wide variety

of attacks.

The most significant drawback in our implementation of the ESP architecture was the

cost of the implementation in terms of effort and time. Because we were modifying an

existing system, a significant effort was spent in understanding the code before being able to

make meaningful modifications. However, the knowledge about the most useful detectors

and types of data can be applied in the design and implementation of future systems which

include the internal sensors and embedded detectors needed for covering the most common

intrusions and attacks. The effort and time needed to implement sensors and detectors could

1This is the only case in which we use lines of code as a metric because of the limitations of the Metre
tool [85], which made it difficult to measure ESAM for the whole kernel.

81

be significantly smaller if they were implemented by the original authors of the programs,

possibly aided by component libraries or automated tools, as mentioned in Section 6.3.

82

5. TESTING THE ESP IMPLEMENTATION

After the initial ESP implementation was completed, a series of tests was performed to

measure its responses and to obtain qualitative and quantitative results about its behavior.

The tests were designed to evaluate the performance impact of the ESP intrusion detection

system on an instrumented host and its detection abilities for previously unknown attacks.

5.1 Performance testing

5.1.1 Test design and methodology

The purpose of the performance tests was to determine the impact that the ESP sensors

and detectors have on the instrumented host, under severe but non-intrusive operating con-

ditions (the detectors were not triggered during these tests). For this purpose, we decided

to focus on two groups of detectors:

1. Detectors in the networking portions of the kernel (24 detectors).

2. Detectors in a web servers (32 detectors).

These are the two largest groups of detectors (see Figure 4.3) and are good representatives

of detectors in the kernel and in a user space application respectively. The detectors are

additional code to be executed. Because they do not interfere with their surrounding code,

their main impact is in terms of additional execution time. We measured CPU utilization

and compared systems compiled with and without the detectors.

The general setup for the tests was as shown in Figure 5.1: One server B, that would

be the one instrumented with the detectors when appropriate, and where the CPU utiliza-

tion would be measured; and a client A, from which the tests would be launched against

B. These two machines were on a dedicated point-to-point network connected with a third

machine R operating as a transparent bridge between A and B. The purpose of R was to

allow the artificial reduction of the bandwidth available for the connection between A and

83

� � �
� � �
� � �
� � �� � �

� � �� � �

RA B

Figure 5.1. General setup for the performance tests of the ESP implementation. Host B is
the server, host A is the client, and R represents a host acting as a transparent bridge
between A and B. The three hosts are on dedicated point-to-point connections over

100Mbit/s full-duplex Ethernet.

B. Hosts A and B were 600 MHz Intel Pentium III machines with 128 MB RAM running

OpenBSD 2.7, and host R was a 700MHz Intel Celeron machine with 128 MB RAM run-

ning FreeBSD [50] anddummy net [120] for imposing constraints on the bandwidth. Un-

necessary programs and services were stopped on the test machines (including thesyslog

andcron daemons, and the X Windows system) to reduce the factors that could confound

the performance measurements.

The first test was done using a subset of the NetPerf [62] benchmark. The NetPerf test

we used measures network performance as the maximum throughput between two hosts

by sending a stream of data from a source to a sink over a TCP or UDP connection. We

selected the TCP version of the test because 16 of the 24 detectors implemented in the

networking sections are in the IP or TCP layers. In this test, the independent variable

was the maximum bandwidth allowed between the source (A) and the sink (B) and was

controlled by setting bandwidth constraints on R usingdummy net. We measured CPU

utilization on B under increasing bandwidth, from 5 Mbps up to 100 Mbps.

In the second test, a web server was running on host B while host A was generating

requests. The web server used was Apache [5] as included in the OpenBSD 2.7 distribution.

We usedhttp load [1] to generate the requests by randomly choosing URLs from a list.

The independent variable in this test was the number of simultaneous connections that

84

Table 5.1
Summary of the parameters for the performance tests. Both tests were repeated for the

ESP and NOESP cases. L represents the length of each test repetition, and S the number
of samples of the CPU load taken during each repetition.

Test name Indep. variable (X) Range of X L (sec) S

NetPerf Bandwidth 5− 100 Mbps 60 54
http load Parallel HTTP connections5− 100 60 54

http load was allowed to establish. We measured CPU utilization on host B under an

increasing number of simultaneous connections, from 5 up to 100.

For each value of the independent variable, twenty runs of the test were performed.

All the runs were duplicated in two blocks: one for host B with detectors (ESP block)

and one without detectors (NOESP block). Each run lasted for 60 seconds and during that

period, snapshot observations of the CPU load in host B were taken each second. The CPU

load was obtained using thetop [83] command, which uses information gathered in the

statclock() function within the kernel context switch [87, p. 58]. Three observations

at the beginning and the end of each run were ignored (to eliminate ramp-up and ramp-

down measurements), and the rest (54 observations) were averaged to obtain an average

CPU load for each run.

All the information for each test is summarized in Table 5.1. The order in which the

independent variable was modified for the NetPerf and httpload tests was generated using

a pseudo-random number generator with a fixed seed to be able to reproduce the sequence.

Before each block all the systems were rebooted and a “warm-up” sequence was run

by applying all the values of the independent variable in increasing order. This was done to

bring the hosts to a stable state in terms of caching, disk spinning and any possible unknown

factors, before taking any measurements.

Although we attempted to arrange the experimental setup to minimize extraneous ef-

fects on the measurements, there are still factors that could affect them, including virtual

memory, process scheduling and caching. The measurement process itself runs on the

85

0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 lo

ad
 (

%
)

�

X (Bandwidth in Mbps)

NOESP
NOESP average

ESP
ESP average

Figure 5.2. Plot of the CPU utilization measurements from the NetPerf experiment,
showing the mean values for the ESP and NOESP cases.

CPU being measured, which may affect the observations as well. Finally, as mentioned,

the results reported consist of an average of averages, which may compound errors in the

measurements.

However, the purpose of these experiments was to compare the behavior of hosts with

and without detectors, and not to establish absolute measurements of performance. As

such, this setup and methodology is adequate for showing the impact that embedded detec-

tors have on the host in which they reside.

5.1.2 Results of the NetPerf test

Figure 5.2 shows the CPU measurements obtained in host B during the execution of

the NetPerf experiment. There are 20 points at each value ofX for each block (ESP and

NOESP) and the lines connect the mean values at each value ofX. We can see in this

graph that for lower values ofX, the CPU utilization is essentially the same, but the dif-

86

Table 5.2
Statistics and analysis results for data from the NetPerf experiment.

Mean CPU % Difference
X NOESP ESP Diff. 95% C.I. p-value

5 1.8296 1.7878 −0.0418 −0.4775–0.3939 0.8507
10 3.2396 3.0246 −0.2150 −0.6507–0.2207 0.3330
15 4.3484 4.5107 0.1624 −0.2734–0.5981 0.4647
20 5.5018 5.9936 0.4918 0.0560–0.9275 0.0270
25 5.9651 7.3771 1.4120 0.9762–1.8477 < 0.0001
30 6.8102 8.4731 1.6629 1.2272–2.0987 < 0.0001
35 7.6407 9.0994 1.4588 1.0231–1.8945 < 0.0001
40 8.3942 10.9556 2.5613 2.1256–2.9970 < 0.0001
45 9.0185 11.7683 2.7498 2.3141–3.1856 < 0.0001
50 9.3859 13.0943 3.7084 3.2727–4.1441 < 0.0001
55 10.2375 14.5434 4.3059 3.8701–4.7416 < 0.0001
60 11.1171 15.4268 4.3097 3.8740–4.7455 < 0.0001
65 11.1625 16.0658 4.9032 4.4675–5.3389 < 0.0001
70 11.9442 17.0314 5.0873 4.6515–5.5230 < 0.0001
75 12.2195 17.2707 5.0511 4.6154–5.4869 < 0.0001
80 12.3222 17.1559 4.8337 4.3979–5.2694 < 0.0001
85 10.8815 17.5441 6.6625 6.2268–7.0983 < 0.0001
90 11.6744 17.8184 6.1440 5.7082–6.5797 < 0.0001
95 12.2040 18.4758 6.2718 5.8361–6.7075 < 0.0001

100 13.8461 18.8180 4.9719 4.5361–5.4076 < 0.0001

ference grows larger asX increases, because the detectors in the networking layers of the

kernel introduce additional work that needs to be done for every packet that is received. To

quantify the difference, a pair-wise F-test was done for each value ofX, and its results are

shown in Table 5.2. The p-values in this table show that the difference in means between

ESP and NOESP can be considered statistically non-significant up to aboutX = 20, but

after that point it is statistically significant. Figure 5.3 shows the difference between the

means at each point, with its 95% confidence interval.

The results of this experiment are what would be expected, with the detectors having

a larger impact as the amount of work that the system does increases. The detectors can

have a considerable impact on the CPU load of the host, particularly for high values of

87

-1

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

M
ea

ns
 d

iff
er

en
ce

 (
C

P
U

 %
)

�

X (Bandwidth in Mbps)

ESP-NOESP

Figure 5.3. Difference in mean CPU utilization between the system with (ESP) and
without (NOESP) detectors in the NetPerf experiment, with the 95% confidence interval

for the difference at each point.

88

X. However, we should keep in mind that this test was specifically designed to stress

the host by maintaining a constant stream of the appropriate bandwidth fed to it. Under

normal operating conditions, the average network load being processed by a host is lower;

therefore the impact of the detectors should not be as noticeable. Furthermore, although

the difference isstatisticallysignificant, it is never more than 7% of CPU utilization, which

in practical terms could be considered acceptable. At its maximum value (forX = 85),

the difference in means is 6.6%. The NetPerf test is exercising a maximum of 24 detectors

(those implemented in the networking layers of the kernel), so on average each detector

adds less than 0.3% to the CPU load of the system. In reality, not all detectors have the

same impact (because of their functionality, implementation, and where they are placed),

but this number is an indication of the small impact that each individual detector has.

5.1.3 Results of the httpload test

The CPU measurements obtained in host B during the execution of the httpload exper-

iment are shown in Figure 5.4, with the mean values plotted as lines. The results from a

pair-wise F-test are shown in Table 5.3, and Figure 5.5 shows the difference between the

means with their 95% confidence interval.

In this case, the results are indicative of the detectors having a large impact on the CPU

utilization of the host. Counter intuitively, we can see that the CPU utilization on the system

with the detectors decreases asX increases. This can possibly be attributed to caching ef-

fects (as the load increases, there is a larger chance that simultaneous or sequential requests

will be for the same URL), but it should be the subject of further study.

5.1.4 Comparison and comments about the tests

The results of the NetPerf experiment are not surprising and show that the impact of the

detectors increases as the network load increases. The impact of the detectors on the host

could potentially be reduced by improving the implementation of some of the detectors,

particularly the ESP-PORTSCAN detector. It keeps considerable state and maintains some

complex data structures, so it is likely to be one of the major contributors to the impact that

the detectors have.

89

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 lo

ad
 (

%
)

�

X (number of simultaneous HTTP requests)

NOESP
NOESP average

ESP
ESP average

Figure 5.4. Plot of the CPU utilization measurements from the httpload experiment,
showing the mean values for the ESP and NOESP cases.

90

Table 5.3
Statistics and analysis results for data from the httpload experiment.

Mean CPU % Difference
X NOESP ESP Diff. 95% C.I. p-value

5 3.6933 15.4078 11.7145 11.2280–12.2011 < 0.0001
10 3.5093 15.0285 11.5191 11.0326–12.0057 < 0.0001
15 3.6630 14.6531 10.9901 10.5036–11.4766 < 0.0001
20 3.6128 14.0115 10.3987 9.9121–10.8852 < 0.0001
25 3.5372 14.2591 10.7220 10.2354–11.2085 < 0.0001
30 3.5509 13.7199 10.1691 9.6825–10.6556 < 0.0001
35 3.7131 13.5013 9.7882 9.3017–10.2747 < 0.0001
40 3.8526 13.1243 9.2718 8.7852– 9.7583 < 0.0001
45 3.8177 12.9858 9.1680 8.6815– 9.6546 < 0.0001
50 3.8070 12.6226 8.8156 8.3290– 9.3021 < 0.0001
55 4.1388 12.6228 8.4840 7.9975– 8.9706 < 0.0001
60 4.1258 12.1468 8.0210 7.5345– 8.5076 < 0.0001
65 4.3988 12.1588 7.7600 7.2735– 8.2465 < 0.0001
70 4.6428 11.7982 7.1554 6.6688– 7.6419 < 0.0001
75 4.9663 11.5338 6.5675 6.0809– 7.0540 < 0.0001
80 5.1974 11.6255 6.4280 5.9415– 6.9146 < 0.0001
85 5.7775 11.4404 5.6628 5.1763– 6.1494 < 0.0001
90 6.1601 11.1788 5.0187 4.5321– 5.5052 < 0.0001
95 6.2901 11.0235 4.7334 4.2468– 5.2199 < 0.0001

100 6.4134 10.6010 4.1876 3.7011– 4.6742 < 0.0001

91

3

4

5

6

7

8

9

10

11

12

13

0 20 40 60 80 100

M
ea

ns
 d

iff
er

en
ce

 (
C

P
U

 %
)

�

X (number of simultaneous HTTP requests)

ESP-NOESP

Figure 5.5. Difference in mean CPU utilization between the system with (ESP) and
without (NOESP) detectors in the httpload experiment. Also shown is the 95%

confidence interval for the difference at each point.

92

Overall, the NetPerf results can be seen as indicative of detectors that were designed

and implemented with moderate success: their impact is proportional to the amount of

activity in the host, and their impact is not excessive.

The httpload results are visibly different from the NetPerf results. Initially there is an

extremely large difference between the ESP and NOESP cases (over 300% forX = 5), but

this difference decreases asX increases to the point where it is 65% atX = 100. While

still being a considerable difference, the reduction from the initial value is dramatic.

The reduction in difference could be explained by a number of factors, including caching

effects on the web server. The httpload makes requests from a fixed-size list of URLs, and

as the number of simultaneous requests increases, the likelihood of requesting the same

URL several times simultaneously or in close sequence increases. If the web server is do-

ing any caching of requests (so that it can serve the same request multiple times without

having to do all the processing repeatedly), it could account for the reduction in CPU load

for larger values ofX.

More interesting for our purposes is the large effect that the detectors have on the CPU

load. This can be explained by the types of detectors involved. The largest detector in the

HTTP server is ESP-BADURLS, a generic detector that does not directly cover any other

detectors, but that provides mechanisms for implementing several others (see Figure 4.11).

These mechanisms consist mainly of a string-matching capability for detecting different

web-based attacks. What ESP-BADURLS does for every HTTP request is to sequentially

compare it against several strings using different qualifications (such as anchoring the test

string in different parts of the request, checking the arguments of the URL, etc.). In this

respect, ESP-BADURLS is different from all the other detectors (which check for a fixed

condition) and could be expecteda priori to have a larger impact on CPU utilization. Fur-

thermore, the initial implementation of ESP-BADURLS (used in these tests) uses a naive

approach, sequentially and blindly comparing the strings against each request. By improv-

ing the implementation to use an efficient regular expressions engine [e.g. 57, 67] or some

other string-matching mechanism, it may be possible to reduce the impact of the HTTP

detectors considerably.

93

In conclusion, these tests point out a major consideration for the use of internal sensors:

they are heavily dependent on implementation decisions, and a different implementation

might make a significant difference in performance and impact. Moreover, extreme care

must be taken in their implementation because when not implemented carefully, they can

have a severe impact on the performance of the monitored component. These tests are

not intended to provide measurements of the performance costs of embedded detectors in

general, but only of our implementation, and to show the feasibility of doing low-overhead

intrusion detection using the ESP architecture.

This consideration is one of the reasons why internal sensors had not been extensively

studied before. Their implementation is complex, and the possible consequences are severe.

However, as will be described in the next section, the payoff in detection capabilities can

be significant, and worth the work necessary to implement the sensors and make them

efficient.

5.2 Detection testing

The purpose of the detection test was to determine the validity of the second hypothesis

(see Section 1.4): by using internal sensors it is possible to detect new attacks. Additionally,

we wanted to get an idea of the effort needed to improve the detection capabilities of the

detectors when necessary. To this end, a number of previously unknown attacks were tested

against a host instrumented with ESP detectors.

5.2.1 Test design and methodology

As a source of information, we monitored the BugTraq mailing list [13] for a period

of slightly over one month, from May 3, 2001 to June 8, 2001. During this period, 157

messages to the mailing list were examined corresponding to reports of new vulnerabilities,

attacks and exploits against different systems. Of these messages, 80 were determined to

be applicable using the criteria defined in Section 4.7. Additionally, only messages that

described specific attacks (and not only generic or vague vulnerabilities) were selected as

applicable.

The 80 applicable attacks were tested against a host instrumented with the ESP imple-

mentation. We performed two types of testing depending on the attack:

94

Real testing: When an attack could be directly attempted against the OpenBSD system

running ESP, we did so and recorded any responses from the existing detectors.

For example, one of the attacks tested was against thecrontab [141] program. Be-

cause this program exists in OpenBSD, the exploit script could be run directly in our

test system to determine whether the detectors would react to it.

Simulated testing: Sometimes an attack was not directly executable in our test platform—

for example, because it used a program that does not exist in OpenBSD, or because it

was specific to some other architecture. However, if the workings of the attack were

clear enough, we did a “simulated testing” of the attack by studying its properties

and determining whether any of the existing detectors would react to that attack if it

were attempted against a system instrumented with ESP.

For example, another one of the attacks examined was against thescoadminpro-

gram [125] in the Unixware operating system. The affected program does not exist

in OpenBSD, but the exploit was clear enough to show that it worked becausescoad-

min followed a symbolic link in the/tmp directory. By this reasoning, we could

determine that the attack would have been detected by the ESP-SYMLINK-OPEN

detector.

After testing, each attack was classified in one or more of the following categories (each

category has a letter code associated with it):

Detected (D): The attack was detected by one or more of the existing detectors. In this

case, we recorded the names of the detectors that reacted to the attack.

Detected if successful (DS):In some cases, the attack itself was not detected, but its ef-

fects would be if the attack were to be successful. In these cases, we also recorded

which detectors would be triggered by the successful attack.

For example, the attack againstcron mentioned before was not immediately detected

by any of the existing detectors. However, on success the attack would have cre-

ated a root-owned set-UID copy of a shell, and this action would trigger the ESP-

95

BADMODE-ROOT-FILE detector, so we classify this attack as “detected if success-

ful.”

Detectable with modifications to existing detectors (DM):Some attacks were not

detected by any of the existing detectors, but a reasonably small change to one of

them would be sufficient to make the attack be detected. We considered as “reason-

ably small” changes that involved tuning some parameter of the detector, or slightly

extending their functionality. In this case, we recorded the detector to which the

changes would have to be made, and what those changes would be.

For example, one of the entries reviewed was a web-based attack that used a “dot-dot”

(../) path to access files outside the normal web document directories, but with the

variation that parts of the string were encoded in their hexadecimal representations to

bypass checks at the web server (for example,../ could be encoded as.%2e%2f ,

where 0x2E and 0x2F are the ASCII codes for a dot and a slash respectively). This

attack was not immediately detected by the existing ESP-URI-DOTDOT detector,

but a small addition to make it “unescape” the strings before checking them would

enable it to detect the attack.

Detectable with creation of new detectors (DC):Some attacks were not detected by the

existing detectors, but they could be by creating a new one. When the new detector

would be a generic one—so that it would be able to detect multiple attacks and not

only the one under testing—we considered this change as acceptable, because it pro-

vides for detection possibilities beyond the attack that prompted its creation. In this

case, we recorded the type of detector to create, its conditions for triggering, and a

proposed name for it.

For example, one of the attacks tested was a web-based buffer overflow, but using a

long string in one of the HTTP headers included in a request (instead of being a long

URL), so the existing ESP-LONGURL detector did not react to it. However, by im-

plementing a similar detector called ESP-HTTP-HDR-OVERFLOW, which performs

96

length checks on HTTP request headers, this attack (and possibly others) could be

detected.

Detectable if successful with modifications to existing detectors (SM):

This is similar to the DM category, but for the case in which the modifications to an

existing detector would cause the attack to be detected only if successful.

This is a possible category, but during the test no attacks were assigned to it.

Detectable if successful with creation of new detectors (SC):This is similar to the DC

category, but for the case in which a new generic detector could be created to detect

a successful attack.

Only one entry was found in this category during the testing. It led to the creation of

the ESP-PRIV-ESCALATION detector, which has the potential to detect many buffer

overflow and race condition attacks in which a process acquires elevated privileges.

Not detectable (ND): An attack was considered in this category when the only way to

detect it would have been to create a new specific detector for it. Creating a specific

detector does not provide any future benefits (possibility for detection of other attacks

other than the current one), so it was not considered as an acceptable change for our

purposes.

For example, one entry reviewed consisted of an attack against thexfs (X font server)

in certain versions of XFree86, which would crash when fed a long random string,

causing a denial-of-service attack. For detecting this attack, it would be necessary to

implement a new specific detector in thexfs code. Therefore we consider it as not

detectable.

An entry can belong to any of these categories and can also belong to both DS and DC

(DSDC) or DS and DM (DSDM). This occurs when an attack is detectable if successful

but it could also be detected by either creating or modifying a detector.

97

Table 5.4
Number of attacks in each category for the four batches examined during the detection

tests. The “Total” column shows the counts for the whole test. The TD and TDM
categories represent the sum of the other fields in each section, and correspond to “Total

number of attacks detected” and “Total number of attacks detectable with changes”
respectively.

Batches

Category #1 #2 #3 #4 Total

Non-applicable 20 17 22 18 77
Applicable 20 20 20 20 80

D 6 9 8 9 32
DS 1 3 0 2 6

TD (D+DS) 7 12 8 11 38

DM 6 4 3 0 13
DC 3 2 3 0 8
SC 0 1 0 0 1

TDM (DM+DC+SC) 9 7 6 0 22

DSDC 1 2 0 0 3

ND 5 3 6 9 23

The testing was divided in four batches of 20 attacks. After every batch, all the changes

recorded for detectors in categories DM, DC and SC were applied, so after each batch all

the entries in those categories would belong to category D.

5.2.2 Results from the detection test

In total, 157 attacks were examined, of which 80 were applicable. Of these, 47 were

done with real testing, and 33 with simulated testing.

The number of attacks in each category for each one of the batches and for the whole

test are shown in Table 5.4. The total categories (TD, TDM and ND) are displayed also

in Figure 5.6. In this chart, we can see that the number of attacks detected was consistently

over 30% in each of the batches. When counting the attacks that were detected after making

modifications to the detectors, the number was consistently over 50%.

98

7

12

8
11

8

5

6 0

5
3

6
9

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4

Batch

A
tt

ac
ks ND

TDM
TD

Figure 5.6. Total of attacks marked as “detected”, “detected with modifications” and “not
detected” for each one of the batches of the detection test.

Keeping in mind that each batch incorporates the changes made after the previous batch,

it is also of interest to analyze the total results at the beginning and at the end. This is, if

all the 80 attacks had been applied to the original detectors, how many would have been

detected? By comparing this with the number of attacks detected at the end of the test

(after all the changes were made), we can observe the impact that the changes had in the

detection capabilities. Figure 5.7 shows these numbers graphically. We can see that even

without any modifications, the original ESP detectors would have been able to detect 35%

of the new attacks (41.2% if we count the ones in group DS). After making the changes,

the detection rate went up to 62.5% (71.2% with DS).

Original detection capabilities

Of the 80 attacks exercised during this test, 33 would have been detected by the ESP

detectors as originally implemented. Table 5.5 shows the distribution of the detectors in-

volved. Table 5.6 shows the distribution of the Krsul categories assigned to each attack (see

Appendix C).

99

28

50

5

7

0

10

20

30

40

50

60

Original Final

N
um

be
r o

f a
tta

ck
s

DS

D

Figure 5.7. Total number of attacks that would have been detected by the original
detectors, and by the detectors after the changes.

Table 5.5
Distribution of original ESP detectors that responded to the attacks in the detection test.

The percentages are with respect to the total number of attacks in the test (80).

Detector Attacks detected % of Total

ESP-SYMLINK-OPEN 13 16.25
ESP-BADMODE-ROOT-FILE 4 5.00
ESP-FTP-CMD-OVERFLOW 4 5.00
ESP-LONGURL 3 3.75
ESP-URI-DOTDOT 3 3.75
ESP-ARGS-LEN 2 2.50
ESP-ENV-LEN 1 1.25
ESP-FILE-INTEGRITY 1 1.25
ESP-PORTSCAN 1 1.25
ESP-SNMP-EMPTY-PACKET 1 1.25
ESP-TMP-SYMLINK 1 1.25

100

Table 5.6
Distribution of categories in the Krsul classification for the attacks to which the original

ESP detectors responded. See Appendix C for the definitions of each category. The
percentages are with respect to the total number of attacks in the test (80).

Category Attacks detected % of Total

2-12-2-1 14 17.50
2-2-1-1 6 7.50
2-12-2-2 3 3.75
3 3 3.75
2-2-1-4 1 1.25
2-3-2-1 1 1.25
2-4-1-1 1 1.25
2-5-1-1 1 1.25
2-7-1-4 1 1.25
2-8-1-1 1 1.25
2-10-2-1 1 1.25

Looking at these tables it is possible to see some relationships. For example, the most

successful detector is ESP-SYMLINK-OPEN, which triggers when a symbolic link is ac-

cessed in a temporary directory. Coupled with the high occurrence of attacks in category

2-12-2-1 (which refers to programs assuming that a file path refers to a valid temporary

file), it is an indicator of the high occurrence of the so-called “bad symlink” attacks, in

which a program can be tricked into following a symbolic link placed by the attacker to

modify or read system files.

Also of interest is the high occurrence of attacks in category 2-2-1-1 (programs as-

suming that user input is at most of a certain length) that corresponds in general to buffer

overflow attacks. These attacks are detected mainly by the ESP-ARGS-LEN, ESP-ENV-

LEN, ESP-LONGURL and ESP-FTP-CMD-OVERFLOW detectors.

We implemented detectors for 130 out of 815 entries in the CVE database (see Sec-

tions 4.3 and 4.13), corresponding to 15.9% of the entries, both applicable and non-ap-

plicable. Those detectors were able to detect 38 of the total 157 entries (both applicable

and non-applicable) examined in the detection test, corresponding to a 24.2% detection

rate. These numbers are encouraging because we can expect that by implementing detec-

101

tors for more CVE entries, a larger number of generic detectors could be designed and

implemented, providing even larger detection capabilities for new attacks.

Effects of changes on detection capabilities

The changes done to the detectors during this test are listed in Table 5.7 according to

the detector they affected. In total, 65 executable statements were added or modified in

these changes, and the changes caused an increase of 30% in the detection capabilities of

the detectors.

Tables 5.8 and 5.9 list the distribution of detectors and Krsul classifications for the

detection capabilities of the final detectors (after the modifications).

Figure 5.8 shows the percentage of attacks in each Krsul category that occurred in the

test, and the percentage of those attacks that were detected by the original and the final

detectors. Also, to make it easier to see the differences between the original and final

detection capabilities by type of vulnerability, Figure 5.9 shows the percentage of attacks

detected by the original and final detectors, plotted asx, y coordinates. In this plot, those

points farther above the identity line represent the categories with the most improvement

as a result of the changes.

One notable change is the increase in the detection of attacks from categories 2-12-2-2

and 2-11-1-1 (both of which correspond to programs assuming that a path name given by

the user is in valid space for the application). This can be attributed to the improvements to

the ESP-URI-DOTDOT detector, as well as the creation of ESP-FTP-CMD-DOTDOT.

We can also see that there was a 100% detection rate for category 2-12-2-1 (correspond-

ing to “bad symlink” attacks), which shows the effectiveness of the corresponding detector

(ESP-SYMLINK-OPEN).

In a similar fashion, Figure 5.10 shows the percentage of attacks detected by each detec-

tor before and after the changes, and Figure 5.11 plots the “before” and “after” percentages

asx, y coordinates. We can see that ESP-URI-DOTDOT was the detector with the largest

improvement. This is mostly the result of the changes in the way encoded characters are

examined and to the large occurrence of attacks of type 2-12-2-2 and 2-11-1-1 (which this

detector corresponds to). We can also see a considerable improvement in ESP-BADURLS

102

Table 5.7
Changes made during the detection test of the ESP implementation. Also listed is the

ESAM count for each change. Note that the ESP-SNMP-EMPTY-PACKET detector has
an ESAM count of zero because no changes were made to the code, it simply was

renamed. Detectors marked with a “*” were created as part of the changes.

Detector Description ESAM

ESP-URI-DOTDOT Make it check the whole HTTP request and
not only the URI part. Also make it look for
DOS-style directory separators (\) in addition
to Unix-style (/).

2

ESP-ARGS-LEN Reduce threshold. 1
ESP-ENV-LEN Reduce threshold. 1
ESP-BADURLS Add five new strings for detecting attacks. 5
ESP-BADURLS Make it unescape the string before process-

ing it. If any escaped characters remain after
the first pass, unescape again, to catch both
single- and double-encoded malicious char-
acters.

41

*ESP-HTTP-HDR-OVERFLOW Created. Triggers when the length of a header
in an HTTP request exceeds a certain thresh-
old or contains NOP characters.

7

*ESP-FAILED-ROOT-CHOWN Created. Triggers when a failed attempt to
change the ownership of a file toroot occurs.

2

*ESP-PRIV-ESCALATION Created. Triggers when “escalation of priv-
ilege” occurs, defined as the execution of a
non-set-UID program by aroot set-UID pro-
gram that has not dropped its privileges.

2

*ESP-FTP-CMD-DOTDOT Created. Triggers when a command sent to
the FTP server uses “.. ” or “ ... ” (valid
in Windows) in a way that would attempt to
access files outside the directory tree of the
FTP server.

4

*ESP-SNMP-EMPTY-PACKET Renamed. This detector already existed as
CVE-2000-0221, but during the test it was
seen that it is able to detect multiple attacks,
so it was renamed as a generic detector.

0

103

Table 5.8
Distribution of ESP detectors that responded to attacks after the changes made during the
detection test. The percentages are with respect to the total number of attacks in the test

(80).

Detector Attacks detected % of Total

ESP-SYMLINK-OPEN 13 16.25
ESP-URI-DOTDOT 9 11.25
ESP-BADURLS 6 7.50
ESP-FTP-CMD-DOTDOT 5 6.25
ESP-ARGS-LEN 4 5.00
ESP-BADMODE-ROOT-FILE 4 5.00
ESP-FTP-CMD-OVERFLOW 4 5.00
ESP-ENV-LEN 3 3.75
ESP-FAILED-ROOT-CHOWN 3 3.75
ESP-LONGURL 3 3.75
ESP-PRIV-ESCALATION 2 2.50
ESP-FILE-INTEGRITY 1 1.25
ESP-HTTP-HDR-OVERFLOW 1 1.25
ESP-PORTSCAN 1 1.25
ESP-SNMP-EMPTY-PACKET 1 1.25
ESP-TMP-SYMLINK 1 1.25

104

Table 5.9
Distribution of categories in the Krsul classification for the attacks detected after the

changes. See Appendix C for the definitions of each category. The percentages are with
respect to the total number of attacks in the test (80).

Category Attacks detected % of Total

2-12-2-1 14 17.50
2-12-2-2 12 15.00
2-2-1-1 7 8.75
3 6 7.50
2-11-1-1 5 6.25
2-3-2-1 3 3.75
2-5-1-1 3 3.75
2-2-1-3 2 2.50
2-2-1-4 2 2.50
2-1-3-1 1 1.25
2-4-1-1 1 1.25
2-7-1-4 1 1.25
2-8-1-1 1 1.25
2-10-2-1 1 1.25

105

0 5 10 15 20

3

2-12-2-2

2-12-2-1

2-11-1-3

2-11-1-1

2-10-2-1

2-8-1-1

2-7-2-5

2-7-1-4

2-5-1-1

2-4-1-1

2-3-2-1

2-2-1-4

2-2-1-3

2-2-1-1

2-1-3-1

1
C

at
eg

or
y

Percentage in detection test

Total in test

TD original

TD final

Figure 5.8. Distribution of attacks in the detection test by Krsul categories. The “Total in
test” bars represent the percentage of all the applicable attacks in the detection test (80)

that belong to each category. The “TD original” bars represents the percentage of attacks
that were detected by the original detectors, and the “TD final” bars represent the

percentage that were detected by the final detectors.

106

-2

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

O
cc

ur
re

nc
e

in
 a

tta
ck

s
de

te
ct

ed
 b

y
E

S
P

 d
et

ec
to

rs
 a

fte
r

ch
an

ge
s

Occurrence in attacks detected by original ESP detectors

2-1-3-1

2-11-1-1

2-12-2-1

2-12-2-2

2-2-1-1

2-2-1-3 2-2-1-4

3

Identity

Figure 5.9. Percentages of attacks detected (by Krsul category) by the original and final
detectors, plotted asx, y coordinates. Unlabeled points correspond to multiple categories
with the same coordinates. Points farther above the identity line represent categories that

saw the largest increases in detection as a result of the changes.

107

0 5 10 15 20

ESP-ARGS-LEN

ESP-BADMODE-ROOT-FILE

ESP-BADURLS

ESP-ENV-LEN

ESP-FAILED-ROOT-CHOWN

ESP-FILE-INTEGRITY

ESP-FTP-CMD-DOTDOT

ESP-FTP-CMD-OVERFLOW

ESP-HTTP-HDR-OVERFLOW

ESP-LONGURL

ESP-PORTSCAN

ESP-PRIV-ESCALATION

ESP-SNMP-EMPTY-PACKET

ESP-SYMLINK-OPEN

ESP-TMP-SYMLINK

ESP-URI-DOTDOT

D
et

ec
to

r

Percentage of attacks detected

TD original
TD final

Figure 5.10. Percentage of attacks detected by each detector, before (TD original) and
after (TD final) the changes made during the detection test. The percentages are expressed

with respect to the total number of applicable attacks in the test (80).

108

-2

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

A
tta

ck
s

de
te

ct
ed

 a
fte

r
ch

an
ge

s
(%

)

�

Attacks detected in original form (%)

ESP-BADURLS

ESP-FAILED-ROOT-CHOWN

ESP-FILE-INTEGRITY

ESP-FTP-CMD-DOTDOT

ESP-FTP-CMD-OVERFLOW

ESP-PRIV-ESCALATION

ESP-SYMLINK-OPEN

ESP-URI-DOTDOT

Identity

Figure 5.11. Percentage of attacks detected by each detector before and after the changes
made during the detection test, plotted asx, y coordinates. Not all the points are labeled

because of space considerations. Points farther above the identity line represent the
detectors that saw the most improvement after the changes.

109

(because of the addition of new patterns), and of some of the generic detectors created as

part of the changes.

5.2.3 Comments about the detection test

To evaluate the similarity of the attacks used in the detection test to the types of attacks

for which the ESP detectors were implemented, we plotted each category using its occur-

rence in the ESP detectors and in the test set asx, y coordinates, as shown in Figure 5.12.

We can see that most points are close to the identity line (shown for reference), indicating

that the two distributions are indeed similar. The Pearson correlation (r) for these points is

0.673, confirming the strong linear correlation. A linear regression of the points results in

the following formula:

y = 1.051x+ 0.0694,

which is close to the identity line, providing a third confirmation of the similarity between

the two distributions.

This similarity suggests the validity of using random drawing from the CVE as a guide

for the implementation of the ESP detectors, because it resulted in detectors for a popula-

tion of attacks similar to those encountered in “the real world.”

Particularly similar (close to the identity line) are categories 2-2-1-1, 2-5-1-1, 2-3-2-1

(all three of which correspond to buffer overflow attacks), 2-2-1-3 and 2-2-1-4 (correspond-

ing to programs failing to check the form of user-provided input). Others, such as 2-12-2-1

(mostly symlink-based attacks) and 2-12-2-2 (mostly “dot-dot” attacks) have a larger rep-

resentation in the test set than in the detectors implemented, but correspond to some of the

most effective generic detectors that were implemented (see Tables 5.5 and 5.8).

Assuming that the set of applicable attacks in the detection test is representative of

the new attacks that continuously appear in the real world, we can make some predictions

about the detection capabilities of the ESP detectors (this assumption should be evaluated

in future work by sampling sets of attacks that appeared during different periods of time).

110

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

in
 th

e
se

t o
f a

pp
lic

ab
le

 a
tta

ck
s

of
 th

e
de

te
ct

io
n

te
st

 (
%

)

Percentage in the original ESP detectors (%)

12-10-2-1

2-10-2-4

2-11-1-1

2-12-1-2

2-12-2-1

2-12-2-2

2-2-1-1

2-2-1-3

2-2-1-4

2-3-2-12-4-1-1

2-5-1-1

2-6-1-1

2-7-1-4

2-7-1-5

3

4

Identity
Linear regression

Figure 5.12. Comparison of the distribution of vulnerability types in the ESP detectors
and in the set of applicable attacks found during the detection test. Points close to the

identity line represent categories that have a similar representation in both distributions.
Points without labels correspond to multiple categories with the same percentage in both
distributions. Also plotted is the line corresponding to a linear regression of the points.
The Pearson correlation of these points is 0.637, indicating a strong linear correlation.

111

Table 5.10
Confidence intervals for the detection rates of ESP detectors, computed using the

percentages of detection before and after the changes made during the detection test. The
“original” and “final” designators refer to the ESP detectors as originally implemented (at

the start of the test) and after the modifications listed in Table 5.7, respectively.

Proportion measured 95% Conf.
Measure in test interval

D original 0.3500 0.2392–0.4608
TD original 0.4125 0.2984–0.5266

D final 0.6250 0.5127–0.7373
TD final 0.7125 0.6071–0.8179

As a first approach to these predictive capabilities, we can use the standard formula for

computing a 95% confidence interval on a proportionp:

95% Confidence interval= p±

(
1.96

√
p(1− p)

N
+

0.5

N

)
.

The 95% confidence intervals for the percentages of detection before and after the changes

made to the detectors are shown in Table 5.10. Further possibilities for prediction of detec-

tion capabilities are described in Section 6.3.

112

6. CONCLUSIONS, SUMMARY AND FUTURE WORK

6.1 Conclusions

Throughout their history, intrusion detection systems have been designed with different

algorithms and structures for detection. They started by being host-based [40], later evolved

into network-based systems [e.g. 60], and in the later years they have tended towards a dis-

tributed combination of the two [e.g. 112]. However, during all that evolution, the sources

of information used by intrusion detection systems have remained essentially unchanged:

audit trails and network traffic. A few notable exceptions have used other sources of infor-

mation [e.g. 65, 76], but even those were designed with specific applications in mind and

using only a limited set of data.

The data sources used by most intrusion detection systems to date have one main lim-

itation: they reflect the behavior of the system being monitored, but are separate from it.

Because of this, we consider them as indirect data sources. These data sources have limita-

tions in the timeliness, completeness and accuracy of the data that they provide. They make

the intrusion detection system vulnerable to attacks on several fronts, including reliability

and denial-of-service. Even when direct data sources have been used by some intrusion

detection systems [e.g. 137], the sensors used to collect the information have been external

to the objects being monitored; therefore still subject to multiple forms of attack.

The problems and limitations that have been encountered in intrusion detection systems

have indicated that the best place to collect data about the behavior of a program or system

is at the point where the data is generated or used.

In this dissertation, we have proposed an architecture based on using internal sensors

built into the code of the programs that are monitored and are able to extract information

from the places in which it is generated or used. Furthermore, by expanding those internal

sensors with decision-making logic, we showed an application of embedded detectors to

build an intrusion detection system. If necessary, this intrusion detection system can op-

113

erate without any external components (components that are separate from the ones being

monitored), other than those necessary to read the alerts produced.

To demonstrate the feasibility of this architecture and to learn more about its needs and

capabilities, we described a specific implementation in the OpenBSD operating system. In

its original form, this implementation detects 130 specific attacks, and through the experi-

ence acquired with those, 20 generic detectors were implemented that have the capability

of detecting previously unknown attacks, as demonstrated by the detection experiments

performed.

This dissertation provides an architectural and practical framework in which future

study of internal sensors and embedded detectors in intrusion detection can be based. Other

research projects are already using this framework for the study of novel techniques for both

host-based and distributed intrusion detection [43, 55], and considerable further study on

the use of internal sensors is possible.

Both Thesis Hypotheses (Section 1.4) were shown to be true. First, it is possible to

build an intrusion detection system using internal sensors while maintaining fidelity, reli-

ability, and reasonable resource usage; although in this last respect, we concluded that the

specifics are dependent on the implementation. Second, internal sensors can be used to de-

tect not only known attacks for which they are specifically designed, but also new attacks

by looking at generic indicators of malicious activity.

This dissertation also provides a classification of data source types for intrusion de-

tection systems, and a description of the characteristics and types of internal sensors and

embedded detectors. Furthermore, its implementation provides specific insight into the

types of data that are more useful in the detection of attacks using internal sensors, and

into places in a system where those sensors can best be placed to make them efficient and

reliable.

Although the implementation cost of the prototype described in this dissertation was

high, the advantages of having internal sensors available on a system are numerous. We

expect that our work will provide guidance and encouragement for their integration in fu-

114

ture systems since their design, which will lead to considerable reductions in their imple-

mentation cost and in their impact on performance and size.

In a sense, our approach differs little from the error-checking and careful programming

that should exist in any well-maintained system. But the use of code embedded into the

operating system and the programs not only for prevention of problems, but for generation

of data, is an important step in the development of intrusion detection systems that can

provide complete and accurate information about the behavior of a host. The collection

of data, even if it is about actions that do not constitute an immediate risk, may provide

information about other attacks against which hosts are not protected yet.

6.2 Summary of main contributions

• Provided a classification of data sources for intrusion detection, and of the mecha-

nisms used for accessing them.

• Described the properties of internal sensors in their use for intrusion detection, and

an architecture for building intrusion detection systems based on internal sensors and

specialized sensors namedembedded detectors.

• Implemented a prototype intrusion detection system using the architecture described,

showing that it is possible to use internal sensors to perform intrusion detection while

maintaining most of the desirable properties described in Section 1.2.2.

• Showed that through the implementation of a “large enough” number of specific

detectors, it was possible to identify patterns and concepts to be used in generic

detectors, confirming the notion that attacks against computer systems tend to cluster

around certain vulnerabilities. Once these core problems are identified, it is possible

to build generic detectors for them.

• Showed that the prototype implemented is able to detect previously unknown attacks

through the use of properly designed generic detectors.

115

• Showed that it is possible to build a general-purpose intrusion detection system based

on obtaining the data needed for the detection, instead of relying on the data provided

by the operating system and the applications.

• Showed that it is possible for an intrusion detection system built using internal sen-

sors to have acceptable impact on the host.

• Showed that careless implementation can cause sensors to have a large impact on

the host. When using internal sensors, implementation issues are significantly more

important than when using traditional external detectors.

• Collected information about the placement and types of data most frequently used

by detectors; data therefore most likely to be useful in the development of future

detectors and sensors.

• Identified types of vulnerabilities most frequently encountered, both through the de-

velopment of the prototype and in the detection testing performed.

• Showed that internal sensors and embedded detectors can add significant detection

capabilities to a system while increasing its size only by a small fraction.

• By combining concepts from source code instrumentation and intrusion detection,

we showed that it is possible to build an intrusion detection system that can perform

intrusion detection at multiple levels (operating system, application, network) and in

multiple forms (signature-based, anomaly-based) to increase its coverage.

6.3 Future work

The work presented in this dissertation has explored the basic concepts of using internal

sensors for intrusion detection by showing their feasibility. However, there is a considerable

amount of work that needs to be done to further study and characterize their properties.

This dissertation focuses on the use of internal sensors in a single host. We consider

ESP as a distributed intrusion detection architecture because the sensors operate indepen-

dently in multiple components, but work is needed to show the feasibility and character-

istics of using internal sensors in an intrusion detection system that spans multiple hosts.

116

Some work is already underway [55] to study the mechanisms that could be used in such a

system in a way that prevents overloading of both communication channels and coordina-

tion components.

The performance tests showed that implementation decisions can severely affect the

performance impact of the sensors. In this respect, practical work is necessary to perform

optimization and reevaluation of the detectors. Further study is necessary to identify the

factors of a detector that result in the largest processing overhead, and in the best ways of

reducing those factors.

In terms of the detection capabilities of internal sensors and embedded detectors, the

results presented in Section 5.2 show that they have the possibility of detecting a significant

percentage of new attacks. Longer-term testing may help in fully understanding and possi-

bly modeling their capabilities and limitations. A formal characterization of the detectors

in relationship to the types of attacks encountered would provide firmer prediction capabil-

ities, and help ensure consistency and completeness of the data provided by the detectors.

A probabilistic model that links the “ease of detection” of each type of vulnerability with

the expected occurrence of each category in new attacks (as implied by the percentages of

detection and total occurrence of each category in Figure 5.8) could be useful in predict-

ing the detection capabilities of embedded detectors. Such a model could also be related

to the expected effect that improvements to the detectors have in the detection capabili-

ties (as shown in Figure 5.9) to determine cost-effective policies for sensor and detector

maintenance and upgrading.

We showed that by implementing detectors for a relatively small fraction of the entries

in the CVE database, we were able to implement generic detectors capable of detecting a

significant percentage of new attacks. Future work could explore improving the detection

rate for new attacks by implementing detectors for a larger number of CVE entries.

Once a host is instrumented with internal sensors, it might be possible to explore new

detection capabilities that would have been to expensive or complex to implement using

traditional intrusion detection systems. One such possibility is that ofoutbound intrusion

detection, in which internal sensors could provide enough information to detect malicious

117

activity at its origin, so that the burden of intrusion detection can be placed not only on the

victims, but also on the potential attackers such as the hosts at Internet Service Providers.

Erlingsson and Schneider [47] described the use ofreference monitorsthat are auto-

matically generated. In this dissertation, the internal sensors and embedded detectors are

individually hand-coded. Using the information gained about the types of data that need to

be collected, it may be possible to explore the possibility of automatically generating those

sensors in a policy directed fashion. Another possibility would be the automatic generation

of components that could be used by programmers to insert sensors and detectors in their

code.

As a design decision, during this work we avoided using the embedded detectors to stop

an attack once its detected. However, this is a clear application for embedded detectors be-

cause of their localization and their ability to perform early detection. Automatic reaction

to intrusions has not been widely explored in practice because of the dangers it presents (a

false alarm can result in the interruption or modification of legitimate activity), but embed-

ded detectors would be an ideal mechanism for implementing it. The feasibility of this task

has been shown in the implementation of the pH system [135], which uses internal sensors

to perform both detection and reaction to attacks.

This dissertation has explored the feasibility of extracting information about the behav-

ior of a computer system that is more complete and reliable than any data that had been

available before to intrusion detection systems. This availability opens multiple possibil-

ities for future exploration and research, and may lead to the design and development of

more efficient, reliable and effective intrusion detection systems.

LIST OF REFERENCES

118

LIST OF REFERENCES

[1] ACME Labs. httpload. Website athttp://www.acme.com/software/
http_load/ , 2001.

[2] Aleph One. Smashing the stack for fun and profit.Phrack Magazine, 7(49), 1996.
URL http://www.securityfocus.com/archive/1/5667 .

[3] D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion-detection ex-
pert system (NIDES): A summary. SRI-CSL 95-07, SRI International, Menlo Park,
California, May 1995. URLhttp://www.sdl.sri.com/nides/reports/
4sri.pdf .

[4] Anzen. Web page athttp://www.anzen.com/products/afj/ , June 2001.

[5] Apache Software Foundation. Apache server. Website at http://www.apache.org/,
2000.

[6] Midori Asaka, Atsushi Taguchi, and Shigeki Goto. The implementation of IDA:
An intrusion detection agent system. InProceedings of the 11th FIRST Conference,
Brisbane, Australia, June 1999. URLhttp://www.ipa.go.jp/STC/IDA/
paper/first.ps.gz .

[7] Stefan Axelsson. Research in intrusion-detection systems: A survey. TR 98-17, De-
partment of Computer Engineering, Chalmers University of Technology, Göteborg,
Sweden, December 1998. Revised August 19, 1999.

[8] Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isacoff, Eugene
Spafford, and Diego Zamboni. An architecture for intrusion detection using au-
tonomous agents. InProceedings of the 14th Annual Computer Security Applica-
tions Conference, pages 13–24. IEEE Computer Society, December 1998.

[9] Bruce Barnett and Dai N. Vu. Vulnerability assessment and intrusion detection with
dynamic software agents. InProceedings of the Software Technology Conference,
April 1997.

[10] Michael Beck, Harold Bohme, Mirko Dzladzka, Ulrich Kunitz, Robert Magnus, and
Dirk Verworner.Linux Kernel Internals. Addison-Wesley, Reading, Massachusetts,
1996.

[11] Kirk A. Bradley, Steven Cheung, Nick Puketza, Biswanath Mukherjee, and
Ronald A. Olsson. Detecting disruptive routers: A distributed network monitoring
approach. InProceedings of the 1998 IEEE Symposium on Security and Privacy,
pages 115–124, Los Alamitos, California, May 1998. IEEE Press.

119

[12] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible markup
language (XML) 1.0. W3C recommendation, World Wide Web Consortium, October
2000. URLhttp://www.w3.org/TR/2000/REC-xml-20001006 .

[13] BugTraq. Mailing list archive. Web page athttp://www.securityfocus.
com/ , 1999–2001.

[14] Adriano M. Cansian, Aleck Zander T. de Souza, Sérgio Leugi Filho, and Ed-
son S. Moreira. Um sistema de captura de pacotes para uso en segurança de re-
des. Available athttp://www.acme-ids.org/downloads/security/
papers/apresentacoes/acme2.pdf , 1999.

[15] Captus Networks. The CaptIO and CaptIO-G security solutions. Web page athttp:
//www.captusnetworks.com/ , June 2001.

[16] CERT Coordination Center. Denial-of-service attack via ping. CERT Advisory
CA-1996-26, Computer Emergency Response Team, December 1996. URLhttp:
//www.cert.org/advisories/CA-1996-26.html .

[17] CERT Coordination Center. UDP port denial-of-service attack. CERT Advisory
CA-1996-01, Computer Emergency Response Team, February 1996. URLhttp:
//www.cert.org/advisories/CA-1996-01.html .

[18] CERT Coordination Center. IP denial-of-service attacks. CERT Advisory CA-1997-
28, Computer Emergency Response Team, December 1998. URLhttp://www.
cert.org/advisories/CA-1997-28.html .

[19] CERT Coordination Center. Smurf IP denial-of-service attacks. CERT Advisory
CA-1998-01, Computer Emergency Response Team, January 1998. URLhttp:
//www.cert.org/advisories/CA-1998-01.html .

[20] CERT Coordination Center. CERT/CC statistics. URLhttp://www.cert.
org/stats/cert_stats.html , 2001.

[21] Steven Christey, Mann, and Hill. Development of a common vulnerability enumer-
ation. In Proceedings of the 2nd International Workshop on Recent Advances in
Intrusion Detection (RAID99), West Lafayette, Indiana, September 1999. Online
proceedings, available athttp://www.raid-symposium.org/raid99/ .

[22] Gary G. Christoph, Kathleen A. Jackson, Michael C. Neuman, Christine L. B.
Siciliano, Dennis D. Simmonds, Cathy A. Stallings, and Joseph L. Thomp-
son. UNICORN: Misuse detection for UNICOSTM. In Proceedings of the 1995
ACM/IEEE Supercomputing Conference. ACM Press and IEEE Computer Society
Press, 1995. URLhttp://www.supercomp.org/sc95/proceedings/
714_GGC/SC95.HTM.

[23] Cisco Secure Consulting. Vulnerability statistics report. Available on-
line at http://www.ieng.com/warp/public/778/security/vuln_
stats_02-03-00.html , 2001.

[24] Cisco Systems. Cisco PIX and CBAC fragmentation attack, September 1998. URL
http://www.cisco.com/warp/public/770/nifrag.shtml . Field
Notice.

120

[25] Cisco Systems. Cisco Secure Intrusion Detection. Web page athttp://www.
cisco.com/warp/public/cc/pd/sqsw/sqidsz/index.shtml , June
2001.

[26] Computer Associates. eTrust audit. Web page athttp://www3.ca.com/
Solutions/Product.asp?ID=157 , June 2001.

[27] Computer Associates. eTrust intrusion detection. Web page athttp://www3.
ca.com/Solutions/Product.asp?ID=163 , June 2001.

[28] Computer Incident Advisory Center. LLNL’s NID distribution site. Web page at
http://ciac.llnl.gov/cstc/nid/ , June 2001.

[29] Computer Security Technology. The Kane security monitor. Web page athttp:
//www.cstl.com/html/info/idi/ksm.htm , June 2001.

[30] Bryan Costales and Eric Allman.sendmail. O’Reilly & Associates, Inc., 981 Chest-
nut Street, Newton, Massachusetts, second edition, 1997.

[31] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike Frantzen,
and Jamie Lokier. FormatGuard: Automatic protection from printf format string vul-
nerabilities. InProceedings of the 2001 USENIX Security Symposium, Washington,
DC, August 2001. URLhttp://immunix.org/formatguard.pdf . To be
published.

[32] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spafford. IDIOT—
users guide. CSD-TR 96-050, COAST Laboratory, Purdue University, 1398 Com-
puter Science Building, West Lafayette, Indiana, September 1996. URLhttp:
//www.cerias.purdue.edu/techreports/public/96-04.ps .

[33] Mark Crosbie and Eugene Spafford. Defending a computer system using au-
tonomous agents. InProceedings of the 18th National Information Systems Security
Conference, volume II, pages 549–558, October 1995. URLhttp://www.best.
com/˜mcrosbie/Research/NISSC95.ps .

[34] Mark Crosbie and Gene Spafford. Active defense of a computer system
using autonomous agents. Technical Report 95-008, COAST Group, De-
partment of Computer Sciences, Purdue University, West Lafayette, Indiana,
February 1995. URLhttp://www.cerias.purdue.edu/homes/spaf/
tech-reps/9508.ps .

[35] Mark Crosbie and Gene Spafford. Applying genetic programming to intrusion detec-
tion. In Proceedings of the AAAI Fall Symposium on Genetic Programming. AAAI,
1995. URL ftp://ftp.cerias.purdue.edu/pub/doc/intrusion_
detection/mcrosbie-spaf-AAAI-paper.ps.Z .

[36] Cylant. Cylantsecure. Web page athttp://www.cylant.com/ , June 2001.

[37] Thomas E. Daniels and Eugene H. Spafford. Identification of host audit data to
detect attacks on low-level IP vulnerabilities.Journal of Computer Security, 7(1):
3–35, 1999.

[38] DataLynx. DataLynx products page. Web page athttp://www.dlxguard.
com/products.htm , June 2001.

121

[39] Hervé Debar, Monique Becker, and Didier Siboni. Hyperview: An intelligent secu-
rity supervisor. InProceedings of the 2nd International Conference on Intelligence
in Networks, Bordeaux, France, March 1992.

[40] Dorothy E. Denning. An Intrusion-Detection Model.IEEE Transactions on Software
Engineering, 13(2):222–232, February 1987.

[41] Digital Equipment Corporation. POLYCENTER security intrusion detector for
SunOS, version 1.0. Online description athttp://www.geek-girl.com/
ids/0015.html , August 1994.

[42] Cheri Dowell and Paul Ramstedt. The ComputerWatch data reduction tool. InPro-
ceedings of the 13th National Computer Security Conference, pages 99–108, Wash-
ington, DC, October 1990.

[43] James P. Early. An embedded sensor for monitoring file integrity. CERIAS TR
2001-41, CERIAS, Purdue University, West Lafayette, Indiana, March 2001.

[44] En Garde Systems, Inc. T-sightTM: on target security. Web page athttp://www.
EnGarde.com/software/t-sight/ , June 2001.

[45] EnteraSys. Dragon intrusion detection solutions. Web page athttp://www.
enterasys.com/ids/ , June 2001.

[46] Entercept Security Technologies. Entercept 2.0: Advanced e-Server protection.
Web page athttp://www.clicknet.com/products/entercept/ , June
2001.

[47] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: A
retrospective. InNew Security Paradigms Workshop, pages 87–95, Caledon Hills,
Ontario, Canada, September 1999. ACM SIGSAC, ACM Press.

[48] Dan Farmer and Wietse Venema. Computer forensics analysis class handouts. Web
page athttp://www.fish.com/forensics/ , August 1999. Accessed in
May 2000.

[49] Stephanie Forrest, Steven Hofmeyr, Anil Somayaji, and Thomas Longstaff. A sense
of self for Unix processes. InProceedings of the 1996 IEEE Symposium on Security
and Privacy, pages 120–128. IEEE Computer Press, 1996. URLftp://ftp.cs.
unm.edu/pub/forrest/ieee-sp-96-unix.ps .

[50] FreeBSD. Web page athttp://www.freebsd.org/ , July 2001.

[51] D. A. Frincke, D. Tobin, J. C. McConnell, J. Marconi, and D. Polla. A framework
for cooperative intrusion detection. InProceedings of the 21st National Information
Systems Security Conference, pages 361–373, October 1998.

[52] Fyodor (fyodor@dhp.com). The art of port scanning. Internethttp://www.
insecure.org/nmap/nmap_doc.html , September 1997.

[53] Greg Gillion and Paul E. Proctor. The case for CentraxICETM hybrid security so-
lution. White paper, CyberSafe Corporation, March 2001. URLhttp://www.
cybersafe.com/centrax/content/CentraxICE_whitepaper.pdf .

122

[54] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure en-
vironment for untrusted helper applications. InProceedings of the 6th Usenix
Security Symposium, pages 1–13, San Jose, California, July 1996. URLhttp:
//www.cs.berkeley.edu:80/˜daw/papers/janus-usenix96.ps .

[55] Rajeev Gopalakrishna. A framework for distributed intrusion detection using inter-
est driven cooperating agents. Paper for Qualifier II examination, Department of
Computer Sciences, Purdue University, May 2001.

[56] Naji Habra, Baudouin Le Charlier, Aziz Mounji, and Isabelle Mathieu. Preliminary
report on Advanced Security Audit Trail Analysis on Unix (ASAX also called SAT-
X). Technical report, Institut D’Informatique, FUNDP, rue Grangagnage 21, 5000
Namur, Belgium, September 1994.

[57] Hackerlab. Rx-Posix: : a very fast implementation of the Posix regexp functions.
Web page athttp://regexps.com/ , June 2001.

[58] Elliotte Rusty Harold and W. Scott Means.XML in a Nutshell: A Desktop Quick
Reference. O’Reilly, January 2001.

[59] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Architecture of a Network
Level Intrusion Detection System. Technical Report CS90-20, University of New
Mexico, Department of Computer Science, August 1990.

[60] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber. A Network
Security Monitor. InProceedings of the IEEE Symposium on Research in Security
and Privacy, pages 296–304, May 1990. URLhttp://seclab.cs.ucdavis.
edu/papers/pdfs/th-gd-90.pdf .

[61] HP Praesidium Intrusion Detection System/9000 Guide. Hewlett Packard, 3000
Hanover Street, Palo Alto, California, first edition, July 2000.

[62] Hewlett-Packard. Netperf. Website at http://www.netperf.org/, 2001.

[63] Judith Hochberg, Kathleen Jackson, Cathy Stallings, J. F. McClary, David DuBois,
and Josephine Ford. NADIR: An automated system for detecting network intrusion
and misuse.Computers and Security, 12(3):235–248, May 1993.

[64] Steven A. Hofmeyr and S. Forrest. Architecture for an artificial immune system.
Evolutionary Computation, 8(4):443–473, Winter 2000. URLhttp://cs.unm.
edu/˜forrest/publications/hofmeyr_forrest.ps .

[65] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using
sequences of system calls.Journal of Computer Security, 6:151–180, 1998.

[66] Steven Andrew Hofmeyr.An Immunological Model of Distributed Detection and
Its Application to Computer Security. PhD thesis, University of New Mexico,
May 1999. URLftp://coast.cs.purdue.edu/pub/doc/intrusion_
detection/hofmeyer-distributed-detection.ps.gz .

[67] Gary Houston. Henry Spencer’s regular expression library. Web page athttp:
//arglist.com/regex/ , June 2001.

[68] Xie Huagang. Build a secure system with LIDS. Online athttp://www.lids.
org/document/build_lids-0.2.html , October 2000.

123

[69] Craig A. Huegen. The latest in denial of service attacks: “smurfing” descrip-
tion and information to minimize effects. URLhttp://www.pentics.net/
denial-of-service/white-papers/smurf.cgi . Accessed on January
18, 2001, February 2000.

[70] Koral Ilgun, Richard A. Kemmerer, and Phillip A. Porras. State transition analysis:
A rule-based intrusion detection approach.IEEE Transactions on Software Engi-
neering, 21(3):181–199, March 1995.

[71] Internet Security Systems. RealSecure. Web page athttp://www.iss.
net/securing_e-business/security_products/intrusion_
detection/ , June 2001.

[72] Capers Jones.Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill, New York, New York, 1991.

[73] Y. Frank Jou, Fengmin Gong, Chandru Sargor, Shyhtsun Felix Wu, and W. Rance
Cleaveland. Architecture design of a scalable intrusion detection system for the
emerging network infrastructure. Technical Report CDRL A005, MCNC Informa-
tion Technologies Division, Research Triangle Park, North Carolina, April 1997.

[74] Richard A. Kemmerer. NSTAT: A model-based real-time network intrusion detec-
tion system. Technical Report TRCS97-18, University of California, Santa Barbara,
Computer Science, June 17, 1998. URLftp://ftp.cs.ucsb.edu/pub/
techreports/TRCS97-18.ps .

[75] Florian Kerschbaum, Eugene H. Spafford, and Diego Zamboni. Using embedded
sensors for detecting network attacks. InProceedings of the 1st ACM Workshop on
Intrusion Detection Systems. ACM SIGSAC, November 2000.

[76] Gene H. Kim and Eugene H. Spafford. The design and implementation of Tripwire:
A file system integrity checker. InProceedings of the 2nd ACM Conference on
Computer and Communications Security, pages 18–29, Fairfax, Virginia, November
1994. ACM Press.

[77] Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulnerabilities
in privileged programs by execution monitoring. InProceedings of the 10th An-
nual Computer Security Applications Conference, pages 134–144, Orlando, Florida,
December 1994. IEEE Computer Society Press.

[78] Ivan Krsul. Software Vulnerability Analysis. PhD thesis, Purdue Univer-
sity, 1998. URL ftp://coast.cs.purdue.edu/pub/COAST/papers/
ivan-krsul/krsul-phd-thesis.ps.Z .

[79] Sandeep Kumar and Eugene H. Spafford. A pattern matching model for misuse
intrusion detection. InProceedings of the 17th National Computer Security Confer-
ence, pages 11–21, October 1994. URLhttp://www.cerias.purdue.edu/
homes/spaf/tech-reps/ncsc.ps .

[80] Sandeep Kumar and Eugene H. Spafford. A software architecture to support misuse
intrusion detection. InProceedings of the 18th National Information Systems Se-
curity Conference, pages 194–204. National Institute of Standards and Technology,
October 1995.

124

[81] Benjamin A. Kuperman and Eugene H. Spafford. Generation of application level
audit data via library interposition. CERIAS TR 99-11, COAST Laboratory, Pur-
due University, West Lafayette, Indiana, October 1998. URLhttps://www.
cerias.purdue.edu/techreports-ssl/public/99-11.ps .

[82] LANguard Network Security Products. LANguard security event log monitor. Web
page athttp://www.languard.com/languard/ , June 2001.

[83] William LeFebvre. Top: display and update information about the top CPU pro-
cesses, 2001. Unix manual pages.

[84] PRC-PŔeCisTM whitepaper. Litton PRC, 1999. URLhttp://www.bellevue.
prc.com/precis/solution.pdf .

[85] Paul Long. Metre v2.3. Software metrics tool available athttp://www.
lysator.liu.se/c/metre-v2-3.html , 2000. Accessed on January 18,
2001.

[86] Teresa F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, H. S. Javitz,
A. Valdes, and T. D. Garvey. A real-time intrusion detection expert system (IDES)
– final technical report. Technical report, SRI Computer Science Laboratory, SRI
International, Menlo Park, California, February 1992.

[87] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.4BSD Operating System. Addison-Wesley,
Reading, Massachusetts, 1996.

[88] MimeStar Intrusion Detection. SecureNet PRO. Web page athttp://www.
mimestar.com/products/ , June 2001.

[89] MITRE. Common vulnerabilities and exposures. Web page athttp://cve.
mitre.org/ , 1999–2000.

[90] Abha Moitra. Real-time audit log viewer and analyzer. InProceedings of the 4th
Workshop on Computer Security Incident Handling. Forum of Incident Response
and Security Teams (FIRST), August 1992.

[91] Paolo Moroni. CERN network security monitor. InProceedings of
the 1st International Workshop on Recent Advances in Intrusion Detection,
Louvain-la-Neuve, Belgium, September 1998. Online proceedings, avail-
able at http://www.raid-symposium.org/raid98/Prog_RAID98/
Table_of_content.html .

[92] Abdelaziz Mounji. Languages and Tools for Rule-Based Distributed Intrusion
Detection. D.Sc. thesis, Facultés Universitaires, Notre-Dame de la Paix, Namur
(Belgium), September 1997. URLftp://ftp.cerias.purdue.edu/pub/
doc/intrusion_detection/mounji_phd_thesis.ps.Z .

[93] Biswanath Mukherjee, Todd L. Heberlein, and Karl N. Levitt. Network intrusion
detection.IEEE Network, 8(3):26–41, May/June 1994.

[94] NetBSD. Web page athttp://www.netbsd.org/ , July 2001.

[95] Network ICE Corporation. BlackICE Sentry. Web page athttp://www.
networkice.com/products/blackice_sentry.html , June 2001.

125

[96] Victoria Neufeldt and David B. Guralnik, editors.Webster’s New World Dictionary
of American English. Simon & Schuster, Inc., third college edition, 1988.

[97] Peter G. Neumann and Phillip A. Porras. Experience with EMERALD to date.
In Proceedings of the 1st USENIX Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, California, April 1999. URLhttp://www.sdl.sri.
com/emerald/det99.ps.gz .

[98] Tim Newsham. Format string attacks. Whitepaper, Guardent, 2000. URLhttp:
//julianor.tripod.com/tn-usfs.pdf .

[99] NFR Security. Overview of NFR network intrusion detection. White pa-
per, June 2001. URLhttp://www.nfr.com/products/NID/docs/NID_
Technical_Overview.pdf .

[100] Stephen Northcutt and The Intrusion Detection Team. Intrusion detection: Shadow
style. Technical report, SANS Institute, 1998. URLhttp://www.docshow.
net/ids/shadowstyle.zip .

[101] Okena. Stormwatch technical white paper. White paper, Okena, 2000. URLhttp:
//www.okena.com/products/literature.htm .

[102] Michael Okuda and Denise Okuda.The Star Trek Encyclopedia:A Reference Guide
to the Future. Simon and Shuster Incorporated, August 1999.

[103] OpenBSD. Web page athttp://www.openbsd.org/ , July 2001.

[104] OpenBSD. The ports and packages collection. Web page athttp://www.
openbsd.org/ports.html , June 2001.

[105] Openwall Project. Linux kernel patch from the Openwall project. Web page at
http://www.openwall.com/linux/ , June 2001.

[106] Packet Storm. Web page athttp://packetstorm.securify.com , 2000.

[107] Vern Paxson. Bro: A system for detecting network intruders in real-time.
In Proceedings of the 7th Annual USENIX Security Symposium, San An-
tonio, Texas, January 1998. URLftp://ftp.ee.lbl.gov/papers/
bro-usenix98-revised.ps.Z .

[108] Wendy W. Peng and Dolores R. Wallace. Software error analysis. NIST Spe-
cial Publication 500-209, National Institute of Standards and Technology, Gaithers-
burg, Maryland, March 1993. URLhttp://hissa.nist.gov/HHRFdata/
Artifacts/ITLdoc/209/error.htm .

[109] Charles Pfleeger.Security in Computing. Prentice Hall, second edition, 1997.

[110] PGP Security. Cybercop monitor. Web page athttp://www.pgp.com/
products/cybercop-monitor/default.asp , May 2001.

[111] Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Maureen Stillman, and Fe-
lix Wu. The common intrusion detection framework architecture. Web page at
http://www.gidos.org/drafts/architecture.txt , May 2001.

126

[112] Phillip A. Porras and Peter G. Neumann. EMERALD: Event monitoring enabling
responses to anomalous live disturbances. InProceedings of the 20th National Infor-
mation Systems Security Conference, pages 353–365. National Institute of Standards
and Technology, October 1997.

[113] Richard Power. 1999 CSI/FBI computer crime and security survey.Computer Secu-
rity Journal, Volume XV(2), 1999.

[114] Katherine E. Price. Host-based misuse detection and conventional operating
systems’ audit data collection. Master’s thesis, Purdue University, December
1997. URLhttp://www.cerias.purdue.edu/techreports/public/
97-15.ps .

[115] Paul Proctor. Computer misuse detection system (CMDSTM) concepts. InSAIC
Science and Technology Trends I, pages 137–145. SAIC, December 1996. URL
http://cp-its-web04.saic.com/satt.nsf/1author?OpenView .

[116] Psionic Software. The Abacus project. Web page athttp://www.psionic.
com/abacus/ , June 2001.

[117] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of
service: Eluding network intrusion detection. Technical report, Secure Networks,
Inc., January 1998.

[118] Andrew Rathmell and Lorenzo Valeri. Information warfare and the asymmetric
threat: An approach to early warning. Technical report, International Center for
Security Analysis, 1997. URLhttp://www.icsa.ac.uk/Publications/
asymmetric-nf.htm .

[119] Recourse Technologies. ManHunt. Web page athttp://www.recourse.com/
products/manhunt/hunt.html , June 2001.

[120] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Review, 27(1):31–41, January 1997.

[121] Martin Roesch. Snort: Lightweight intrusion detection for networks. InPro-
ceedings of the LISA’99 conference. USENIX, November 1999. URLhttp:
//www.snort.org/lisapaper.txt .

[122] RootShell. Web page athttp://www.rootshell.com , 2000.

[123] Ryan Net Works, LLC. CyberTrace intrusion detection system. Web page athttp:
//www.cybertrace.com/ctids.html , June 2001.

[124] Sanctum. AppShield: Automated web application control and security.
Web page athttp://www.sanctuminc.com/solutions/appshield/
index.html , June 2001.

[125] Scoadmin: invoke SCOadmin applications or configure SCOadmin hierarchy. Santa
Cruz Operation, 2001. SCO Unixware manual page.

[126] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spafford, Au-
robindo Sundaram, and Diego Zamboni. Analysis of a denial of service attack on
TCP. InProceedings of the 1997 IEEE Symposium on Security and Privacy, pages
208–223. IEEE Computer Society Press, May 1997.

127

[127] Scut and Team Teso. Exploiting format string vulnerabilities. Online document at
http://julianor.tripod.com/teso-fs1-1.pdf , March 2001.

[128] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Systems in In-
trusion Detection: A Case Study. InProceedings of the 11th National Computer
Security Conference, October 1988.

[129] Secure Worx. Defense Worx network intrusion detection system. Web page
at http://www.secure-worx.com/products/network_ids.html ,
June 2001.

[130] SecurityFocus. Web page athttp://www.securityfocus.com/ , 1999–
2000.

[131] Robert S. Sielken. Application intrusion detection. Technical Report CS-99-17,
Department of Computer Science, University of Virginia, June 1999. URLftp:
//ftp.cs.virginia.edu/pub/techreports/CS-99-17.ps.Z .

[132] Stephen Smaha. Haystack: An intrusion detection system. InProceedings of the
4th Aerospace Computer Security Applications Conference, pages 37–44, December
1988.

[133] Steven R. Snapp, S. Smaha, D. M. Teal, and T. Grance. The DIDS (Distributed
Intrusion Detection System) Prototype. InProceedings of the USENIX Summer 1992
Technical Conference, pages 100–108, San Antonio, Texas, June 1992.

[134] Michael Sobirey. The intrusion detection system AID. Web page
at http://www-rnks.informatik.tu-cottbus.de/˜sobirey/aid.
e.html , June 2001.

[135] Anil Somayaji and Stephanie Forrest. Automated response using system-call delays.
In Proceedings of the 9th USENIX Security Symposium, August 2000. URLhttp:
//cs.unm.edu/˜forrest/publications/uss-2000.ps .

[136] SourceFire Inc. OpenSnort Sensor. Web page athttp://www.sourcefire.
com/html/products.html , June 2001.

[137] Eugene H. Spafford and Diego Zamboni. Intrusion detection using autonomous
agents.Computer Networks, 34(4):547–570, October 2000. URLhttp://www.
elsevier.nl/gej-ng/10/15/22/49/30/25/article.pdf .

[138] Lance Spitzner. Intrusion detection for FW-1: How to know when you are be-
ing probed, November 2000. URLhttp://www.enteract.com/˜lspitz/
intrusion.html .

[139] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS: A graph based intrusion detection
system for large networks. InProceedings of the 19th National Information Systems
Security Conference, volume 1, pages 361–370. National Institute of Standards and
Technology, October 1996.

[140] W. Richard Stevens.TCP/IP Illustrated, volume 2. Addison-Wesley, 1994.

[141] Crontab: user crontab file. Sun Microsystems, 2001. SunOS 5.7 manual page.

128

[142] Df: report filesystem disk space usage. Sun Microsystems, 2001. SunOS 5.7 manual
page.

[143] Inetd: Internet services daemon. Sun Microsystems, 2001. SunOS 5.7 manual page.

[144] Netstat: show network status. Sun Microsystems, 2001. SunOS 5.7 manual page.

[145] Ping: send ICMP ECHOREQUEST packets to network hosts. Sun Microsystems,
2001. SunOS 5.7 manual page.

[146] Ps: report process status. Sun Microsystems, 2001. SunOS 5.7 manual page.

[147] Kymie M. C. Tan, David Thompson, and A. B. Ruighaver. Intrusion detection sys-
tems and a view to its forensic applications. Technical report, Department of Com-
puter Science, University of Melbourne, Parkville 3052, Australia, year of publica-
tion unkown. URLhttp://www.securityfocus.com/data/library/
idsforensics.ps .

[148] AXENT Technologies. AXENT technologies’ NetProwlerTM and Intruder AlertTM.
White paper, Hurwitz Group, September 2000. URLhttp://www.safecomms.
com/pdf/symantec/ita_hurwitzreport_wp.pdf .

[149] Touch Technologies, Inc. INTOUCH INSA - network security agent. Web page at
http://www.ttisms.com/tti/nsa_www.html , June 2001.

[150] H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session activity.
In Proceedings of the 1989 IEEE Symposium on Research in Security and Privacy,
pages 280–289, 1989.

[151] Wietse Venema. TCP WRAPPER: Network monitoring, access control and booby
traps. In USENIX Association, editor,Proceedings of the 3rd UNIX Security Sym-
posium, pages 85–92, Berkeley, California, September 1992. USENIX.

[152] G. Vigna and R.A. Kemmerer. NetSTAT: A Network-based Intrusion Detection Sys-
tem. Journal of Computer Security, 7(1):37–71, 1999. URLhttp://www.cs.
ucsb.edu/˜rsg/pub/1999_vigna_kemmerer_jcs99.ps.gz .

[153] Gregory B. White, Eric A. Fisch, and Udo W. Pooch. Cooperating security man-
agers: A peer-based intrusion detection system.IEEE Network, pages 20–23, Jan-
uary/February 1996.

[154] Scott M. Wimer. CylantsecureTM: A scientific approach to security. Whitepa-
per, Cylant Technology, Inc., 2001. URLhttp://www.cylant.com/
whitepapers/cs-scientific.shtml .

[155] X-Force. Web page athttp://xforce.iss.net , 2000.

[156] Jiahai Yang, Peng Ning, X. Sean Wang, and Sushil Jajodia. CARDS: A distributed
system for detecting coordinated attacks. InProceedings of IFIP TC11 16th Annual
Working Conference on Information Security, pages 171–180, August 2000. URL
http://ise.gmu.edu/˜pning/sec2000.ps .

APPENDICES

129

Appendix A: Detectors and Sensors Implemented

The tables in this appendix list all the detectors and sensors that were implemented in

the original implementation phase of the ESP project (before the modifications that resulted

from the testing phase described in Section 5.2).

The columns in these tables have the following meanings:

N: Reference number of the detector, starting with an “S” for specific detectors and with a

“G” for generic detectors.

ID: Identifier of the detector.

Vuln: For specific detectors, vulnerable operating system or program.

S: Whether the detector is stateful: “Yes” (Stateful) or “No” (Stateless).

Src: Types of data sources used: “Net” (Network data), “SysState” (System state), “User”

(User-provided data), “FileSys” (File system state), “App” (Application data), “Prog”

(Program state) and “SysInfo” (System information).

Dir: Implementation source directory.

Class: Corresponding category in the taxonomy proposed by Krsul [78] (see Appendix C).

Det: Reference number of detectors that cover the current one, if any.

Imp: Reference number of detectors that implement the current one, if any.

E: ESAM (Executable Statements Added or Modified) metric for the detector.

B: BOCAM (Blocks of Code Added or Modified) metric for the detector.

Not all fields apply to all the detectors. When not applicable, a field is left empty or with

the string “n/a”.

130

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
1

C
V

E
-1

99
9-

00
13

(m
)s

sh
N

o
F

ile
S

ys
ss

h
2-

12
-2

-2
G

18
,G

21
2

1
S

to
le

n
cr

ed
en

tia
ls

fr
om

S
S

H
cl

ie
nt

s
vi

a
ss

h-
ag

en
tp

ro
gr

am
,a

llo
w

in
g

ot
he

rl
oc

al
us

er
s

to
ac

ce
ss

re
m

ot
e

ac
co

un
ts

be
lo

ng
in

g
to

th
e

ss
h-

ag
en

tu
se

r.
S

2
C

V
E

-1
99

9-
00

16
(m

)I
P

N
o

N
et

n
e

tin
e

t
2-

10
-1

-1
G

20
2

1
La

nd
IP

de
ni

al
of

se
rv

ic
e.

S
3

C
V

E
-1

99
9-

00
22

(m
)r

di
st

N
o

2-
5-

1-
1

G
1

Lo
ca

lu
se

r
ga

in
s

ro
ot

pr
iv

ile
ge

s
vi

a
bu

ffe
r

ov
er

flo
w

in
rd

is
t,

vi
a

ex
ps

tr
()

fu
nc

tio
n.

S
4

C
V

E
-1

99
9-

00
26

Ir
ix

N
o

2-
5-

1-
1

G
1

R
oo

tp
riv

ile
ge

s
vi

a
bu

ffe
r

ov
er

flo
w

in
ps

et
co

m
m

an
d

on
S

G
II

R
IX

sy
st

em
s.

S
5

C
V

E
-1

99
9-

00
27

Ir
ix

N
o

U
se

r
m

t
2-

5-
1-

1
G

1
2

1
R

oo
tp

riv
ile

ge
s

vi
a

bu
ffe

r
ov

er
flo

w
in

ej
ec

tc
om

m
an

d
on

S
G

II
R

IX
sy

st
em

s.
S

6
C

V
E

-1
99

9-
00

32
(m

)lp
r

N
o

U
se

r
lp

r
2-

5-
1-

1
G

1
2

1
B

uf
fe

r
ov

er
flo

w
in

B
S

D
-b

as
ed

lp
r

pa
ck

ag
e

al
lo

w
s

lo
ca

lu
se

rs
to

ga
in

ro
ot

pr
iv

ile
ge

s.
S

7
C

V
E

-1
99

9-
00

39
Ir

ix
N

o
h

tt
p

d
2-

9-
1-

3
G

3
A

rb
itr

ar
y

co
m

m
an

d
ex

ec
ut

io
n

us
in

g
w

eb
di

st
C

G
Ip

ro
gr

am
in

IR
IX

.
S

8
C

V
E

-1
99

9-
00

46
(m

)r
lo

gi
nd

Y
es

N
et

rl
o

g
in

d
2-

3-
2-

1
G

6
5

2
B

uf
fe

r
ov

er
flo

w
of

rlo
gi

n
pr

og
ra

m
us

in
g

T
E

R
M

en
vi

ro
nm

en
ta

lv
ar

ia
bl

e.
S

9
C

V
E

-1
99

9-
00

47
(m

)s
en

dm
ai

l
Y

es
P

ro
g,

U
se

r
se

n
d

m
a

il
3

10
7

B
uf

fe
r

ov
er

flo
w

vu
ln

er
ab

ili
ty

in
se

nd
m

ai
l8

.8
.3

/8
.8

.4
.

S
10

C
V

E
-1

99
9-

00
49

Ir
ix

N
o

2-
12

-2
-1

G
19

,G
21

C
se

tu
p

un
de

r
IR

IX
al

lo
w

s
ar

bi
tr

ar
y

fil
e

cr
ea

tio
n

or
ov

er
w

rit
in

g.
S

11
C

V
E

-1
99

9-
00

52
(m

)I
P

N
o

N
et

n
e

tin
e

t
2-

10
-2

-2
2

1
IP

fr
ag

m
en

ta
tio

n
de

ni
al

of
se

rv
ic

e
in

F
re

eB
S

D
al

lo
w

s
a

re
m

ot
e

at
ta

ck
er

to
ca

us
e

a
cr

as
h.

S
12

C
V

E
-1

99
9-

00
53

F
re

eB
S

D
N

o
N

et
,

S
ys

S
ta

te
n

e
tin

e
t

2-
10

-4
-1

G
20

2
1

T
C

P
R

S
T

de
ni

al
of

se
rv

ic
e

in
F

re
eB

S
D

.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

131

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
13

C
V

E
-1

99
9-

00
57

(m
)v

ac
at

io
n

N
o

U
se

r
va

ca
tio

n
2-

2-
1-

3
2

1
M

ul
tip

le
ve

nd
or

va
ca

tio
n(

1)
vu

ln
er

ab
ili

ty
.

S
14

C
V

E
-1

99
9-

00
68

(m
)P

H
P

N
o

h
tt
p

d
2-

12
-1

-1
G

3
C

G
IP

H
P

m
yl

og
sc

rip
ta

llo
w

s
an

at
ta

ck
er

to
re

ad
an

y
fil

e
on

th
e

ta
rg

et
se

rv
er

.
S

15
C

V
E

-1
99

9-
00

70
(m

)t
es

t-
cg

i
N

o
h

tt
p

d
2-

2-
1-

4
G

3
Te

st
-c

gi
pr

og
ra

m
al

lo
w

s
an

at
ta

ck
er

to
lis

tfi
le

s
on

th
e

se
rv

er
.

S
16

C
V

E
-1

99
9-

00
71

(m
)h

ttp
d

N
o

N
et

h
tt
p

d
2-

6-
1-

1
2

1
A

pa
ch

e
ht

tp
d

co
ok

ie
bu

ffe
r

ov
er

flo
w

fo
r

ve
rs

io
ns

1.
1.

1
an

d
ea

rli
er

.
S

17
C

V
E

-1
99

9-
00

74
(m

)T
C

P
Y

es
N

et
n

e
tin

e
t

1
G

13
12

3
Li

st
en

in
g

T
C

P
po

rt
s

ar
e

se
qu

en
tia

lly
al

lo
ca

te
d,

al
lo

w
in

g
sp

oo
fin

g
at

ta
ck

s.
S

18
C

V
E

-1
99

9-
00

77
(m

)T
C

P
N

o
N

et
,

S
ys

S
ta

te
n

e
tin

e
t

1
2

1

P
re

di
ct

ab
le

T
C

P
se

qu
en

ce
nu

m
be

rs
al

lo
w

sp
oo

fin
g.

S
19

C
V

E
-1

99
9-

00
93

A
IX

N
o

F
ile

S
ys

,
S

ys
S

ta
te

n
sl

o
o

ku
p

2-
12

-1
-2

3
1

A
IX

ns
lo

ok
up

co
m

m
an

d
al

lo
w

s
lo

ca
lu

se
rs

to
ob

ta
in

ro
ot

ac
ce

ss
by

no
td

ro
pp

in
g

pr
iv

ile
ge

s
co

rr
ec

tly
.

S
20

C
V

E
-1

99
9-

00
95

(m
)s

en
dm

ai
l

N
o

U
se

r
se

n
d

m
a

il
4

1
1

D
eb

ug
co

m
m

an
d

in
se

nd
m

ai
l.

S
21

C
V

E
-1

99
9-

00
96

(m
)s

en
dm

ai
l

N
o

U
se

r
se

n
d

m
a

il
4

6
2

S
en

dm
ai

ld
ec

od
e

al
ia

se
s

ca
n

be
us

ed
to

ov
er

w
rit

e
fil

es
.

S
22

C
V

E
-1

99
9-

01
03

(m
)in

et
d

N
o

N
et

in
e

td
4

8
4

E
ch

o
an

d
ch

ar
ge

n,
or

ot
he

r
co

m
bi

na
tio

ns
of

U
D

P
se

rv
ic

es
,c

an
be

us
ed

in
ta

nd
em

to
flo

od
th

e
se

rv
er

,
a.

k.
a.

U
D

P
bo

m
b

or
U

D
P

pa
ck

et
st

or
m

.
S

23
C

V
E

-1
99

9-
01

08
Ir

ix
N

o
2-

5-
1-

1
G

1
T

he
pr

in
te

rs
pr

og
ra

m
in

IR
IX

ha
s

a
bu

ffe
r

ov
er

flo
w

th
at

gi
ve

s
ro

ot
ac

ce
ss

to
lo

ca
lu

se
rs

.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

132

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
24

C
V

E
-1

99
9-

01
16

(m
)T

C
P

N
o

S
ys

S
ta

ten
e

tin
e

t
1

2
1

D
en

ia
lo

f
se

rv
ic

e
w

he
n

an
at

ta
ck

er
se

nd
s

m
an

y
S

Y
N

pa
ck

et
s

to
cr

ea
te

m
ul

tip
le

co
nn

ec
tio

ns
w

ith
ou

t
ev

er
se

nd
in

g
an

A
C

K
to

co
m

pl
et

e
th

e
co

nn
ec

tio
n,

ak
a

S
Y

N
flo

od
.

S
25

C
V

E
-1

99
9-

01
28

(m
)I

C
M

P
N

o
N

et
n

e
tin

e
t

2-
10

-2
-1

G
11

3
1

O
ve

rs
iz

ed
IC

M
P

pi
ng

pa
ck

et
s

ca
n

re
su

lt
in

a
de

ni
al

of
se

rv
ic

e,
ak

a
P

in
g

of
D

ea
th

.
S

26
C

V
E

-1
99

9-
01

29
(m

)s
en

dm
ai

l
N

o
F

ile
S

ys
se

n
d

m
a

il
2-

12
-1

-2
2

1
S

en
dm

ai
lg

ro
up

pe
rm

is
si

on
s

vu
ln

er
ab

ili
ty

.
S

27
C

V
E

-1
99

9-
01

30
(m

)s
en

dm
ai

l
Y

es
S

ys
S

ta
tese

n
d

m
a

il
2-

7-
2-

3
3

3
S

en
dm

ai
lD

ae
m

on
M

od
e

vu
ln

er
ab

ili
ty

.
S

28
C

V
E

-1
99

9-
01

31
(m

)s
en

dm
ai

l
N

o
P

ro
g

se
n

d
m

a
il

2-
6-

1-
1

G
10

1
1

S
en

dm
ai

lG
E

C
O

S
bu

ffe
r

ov
er

flo
w

an
d

re
so

ur
ce

st
ar

va
tio

n.
S

29
C

V
E

-1
99

9-
01

32
(m

)v
i

N
o

2-
12

-2
-1

G
19

,G
21

1
E

xp
re

se
rv

e,
us

ed
in

vi
an

d
ex

,a
llo

w
s

lo
ca

lu
se

rs
to

ov
er

w
rit

e
ar

bi
tr

ar
y

fil
es

an
d

ga
in

ro
ot

ac
ce

ss
.

S
30

C
V

E
-1

99
9-

01
35

S
ol

ar
is

N
o

2-
12

-2
-1

G
19

,G
21

A
dm

in
to

ol
in

S
ol

ar
is

al
lo

w
s

a
lo

ca
lu

se
r

to
w

rit
e

to
ar

bi
tr

ar
y

fil
es

an
d

ga
in

ro
ot

ac
ce

ss
.

S
31

C
V

E
-1

99
9-

01
37

Li
nu

x
N

o
U

se
r

d
ip

2-
5-

1-
1

G
1

2
1

T
he

di
p

pr
og

ra
m

on
m

an
y

Li
nu

x
sy

st
em

s
al

lo
w

s
lo

ca
lu

se
rs

to
ga

in
ro

ot
ac

ce
ss

vi
a

a
bu

ffe
r

ov
er

flo
w

.
S

32
C

V
E

-1
99

9-
01

53
W

in
do

w
s

N
o

N
et

n
e

tin
e

t
un

kn
ow

n
3

1
W

in
do

w
s

95
/N

T
ou

to
fb

an
d

(O
O

B
)

da
ta

de
ni

al
of

se
rv

ic
e

th
ro

ug
h

N
E

T
B

IO
S

po
rt

,a
ka

W
in

N
uk

e.
S

33
C

V
E

-1
99

9-
01

57
C

is
co

P
IX

N
o

n
e

tin
e

t
2-

10
-2

-2
S

11
S

11
2

1
C

is
co

P
IX

fir
ew

al
la

nd
C

B
A

C
IP

fr
ag

m
en

ta
tio

n
at

ta
ck

re
su

lts
in

a
de

ni
al

of
se

rv
ic

e.
S

34
C

V
E

-1
99

9-
01

58
W

in
do

w
s

N
o

2-
2-

1-
3,

2-
12

-2
-2

G
22

C
is

co
P

IX
fir

ew
al

lm
an

ag
er

(P
F

M
)

on
W

in
do

w
s

N
T

al
lo

w
s

at
ta

ck
er

s
to

co
nn

ec
t

to
po

rt
80

80
on

th
e

P
F

M
se

rv
er

an
d

re
tr

ie
ve

an
y

fil
e

w
ho

se
na

m
e

an
d

lo
ca

tio
n

is
kn

ow
n.

S
35

C
V

E
-1

99
9-

01
64

S
ol

ar
is

N
o

2-
7-

1-
4

G
17

,G
16

,G
21

A
ra

ce
co

nd
iti

on
in

th
e

S
ol

ar
is

ps
co

m
m

an
d

al
lo

w
s

an
at

ta
ck

er
to

ov
er

w
rit

e
cr

iti
ca

lfi
le

s.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

133

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
36

C
V

E
-1

99
9-

01
77

W
in

do
w

s
N

o
h

tt
p

d
2-

12
-1

-2
G

3
T

he
up

lo
ad

er
pr

og
ra

m
in

th
e

W
eb

S
ite

w
eb

se
rv

er
al

lo
w

s
a

re
m

ot
e

at
ta

ck
er

to
ex

ec
ut

e
ar

bi
tr

ar
y

pr
o-

gr
am

s.
S

37
C

V
E

-1
99

9-
01

83
Li

nu
x

N
o

U
se

r
tf
tp

d
2-

12
-2

-2
2

1
Li

nu
x

im
pl

em
en

ta
tio

ns
of

T
F

T
P

w
ou

ld
al

lo
w

ac
ce

ss
to

fil
es

ou
ts

id
e

th
e

re
st

ric
te

d
di

re
ct

or
y.

S
38

C
V

E
-1

99
9-

02
04

(m
)s

en
dm

ai
l

Y
es

N
et

se
n

d
m

a
il

2-
4-

1-
4

4
2

Id
en

td
at

ta
ck

.
S

39
C

V
E

-1
99

9-
02

06
(m

)s
en

dm
ai

l
Y

es
P

ro
g,

U
se

r
se

n
d

m
a

il
3

9
8

M
IM

E
bu

ffe
r

ov
er

flo
w

in
se

nd
m

ai
l8

.8
.0

an
d

8.
8.

1.
S

40
C

V
E

-1
99

9-
02

14
S

un
O

S
N

o
N

et
,

S
ys

S
ta

te
n

e
tin

e
t

un
kn

ow
n

2
1

D
en

ia
lo

fs
er

vi
ce

by
se

nd
in

g
fo

rg
ed

IC
M

P
un

re
ac

ha
bl

e
pa

ck
et

s.
S

41
C

V
E

-1
99

9-
02

19
W

in
do

w
s

N
o

2-
2-

1-
1

G
8

2
1

B
uf

fe
r

ov
er

flo
w

in
S

er
v-

U
F

T
P

se
rv

er
w

he
n

us
er

pe
rf

or
m

s
a

cw
d

to
a

di
re

ct
or

y
w

ith
a

lo
ng

na
m

e.
S

42
C

V
E

-1
99

9-
02

39
(m

)F
as

tT
ra

ck
W

eb
S

er
ve

r
N

o
h

tt
p

d
2-

2-
1-

3
G

3

N
et

sc
ap

e
F

as
tT

ra
ck

W
eb

se
rv

er
lis

ts
fil

es
w

he
n

a
lo

w
er

ca
se

ge
tc

om
m

an
d

is
us

ed
in

st
ea

d
of

an
up

pe
r-

ca
se

G
E

T.
S

43
C

V
E

-1
99

9-
02

59
(m

)c
fin

ge
rd

N
o

U
se

r
fin

g
e

rd
2-

2-
1-

3
2

1
C

fin
ge

rd
lis

ts
al

lu
se

rs
on

a
sy

st
em

vi
a

se
ar

ch
.*

*@
ta

rg
et

.
S

44
C

V
E

-1
99

9-
02

60
(m

)jj
N

o
h

tt
p

d
2-

2-
1-

4
G

3
T

he
jj

C
G

Ip
ro

gr
am

al
lo

w
s

co
m

m
an

d
ex

ec
ut

io
n

vi
a

sh
el

lm
et

ac
ha

ra
ct

er
s.

S
45

C
V

E
-1

99
9-

02
65

(m
)I

C
M

P
N

o
N

et
n

e
tin

e
t

un
kn

ow
n

8
1

IC
M

P
re

di
re

ct
m

es
sa

ge
s

m
ay

cr
as

h
or

lo
ck

up
a

ho
st

.
S

46
C

V
E

-1
99

9-
02

67
(m

)N
C

S
A

ht
tp

d
N

o
A

pp
h

tt
p

d
2-

2-
1-

1
G

3
2

1
B

uf
fe

r
ov

er
flo

w
in

N
C

S
A

H
T

T
P

da
em

on
v1

.3
al

lo
w

s
re

m
ot

e
co

m
m

an
d

ex
ec

ut
io

n.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

134

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
47

C
V

E
-1

99
9-

02
73

S
ol

ar
is

Y
es

N
et

te
ln

e
td

un
kn

ow
n

6
2

D
en

ia
lo

fs
er

vi
ce

th
ro

ug
h

S
ol

ar
is

2.
5.

1
te

ln
et

by
se

nd
in

g
D̂

ch
ar

ac
te

rs
.

S
48

C
V

E
-1

99
9-

02
81

W
in

do
w

s
N

o
N

et
h

tt
p

d
2-

2-
1-

1
G

12
2

1
D

en
ia

lo
fs

er
vi

ce
in

IIS
us

in
g

lo
ng

U
R

Ls
.

S
49

C
V

E
-1

99
9-

02
99

F
re

eB
S

D
N

o
N

et
n

e
t

2-
6-

1-
1

G
9

1
1

B
uf

fe
r

ov
er

flo
w

in
F

re
eB

S
D

lp
d

th
ro

ug
h

lo
ng

D
N

S
ho

st
na

m
es

.
S

50
C

V
E

-1
99

9-
03

04
(m

)k
er

ne
l

N
o

3
S

51
M

m
ap

fu
nc

tio
n

in
B

S
D

al
lo

w
s

lo
ca

la
tta

ck
er

s
in

th
e

km
em

gr
ou

p
to

m
od

ify
m

em
or

y
th

ro
ug

h
de

vi
ce

s.
S

51
C

V
E

-1
99

9-
03

23
(m

)k
er

ne
l

N
o

S
ys

S
ta

tev
m

3
2

2
F

re
eB

S
D

m
m

ap
fu

nc
tio

n
al

lo
w

s
us

er
s

to
m

od
ify

ap
pe

nd
-o

nl
y

or
im

m
ut

ab
le

fil
es

.
S

52
C

V
E

-1
99

9-
03

24
H

P
-U

X
N

o
2-

7-
1-

5
G

19
,G

21
P

pl
pr

og
ra

m
in

H
P

-U
X

al
lo

w
s

lo
ca

lu
se

rs
to

cr
ea

te
ro

ot
fil

es
th

ro
ug

h
sy

m
lin

ks
.

S
53

C
V

E
-1

99
9-

03
40

Li
nu

x
N

o
U

se
r

cr
o

n
2-

3-
2-

1
G

6,
G

2
1

1
B

uf
fe

r
ov

er
flo

w
in

Li
nu

x
S

la
ck

w
ar

e
cr

on
d

pr
og

ra
m

al
lo

w
s

lo
ca

lu
se

rs
to

ga
in

ro
ot

ac
ce

ss
.

S
54

C
V

E
-1

99
9-

03
73

(m
)S

up
er

N
o

2-
3-

2-
1,

2-
5-

1-
1

G
6,

G
1

B
uf

fe
r

ov
er

flo
w

in
th

e
S

up
er

ut
ili

ty
in

D
eb

ia
n

Li
nu

x
an

d
ot

he
r

op
er

at
in

g
sy

st
em

s
al

lo
w

s
lo

ca
lu

se
rs

to
ex

ec
ut

e
co

m
m

an
ds

as
ro

ot
.

S
55

C
V

E
-1

99
9-

03
77

(m
)in

et
d

N
o

1
S

77
P

ro
ce

ss
ta

bl
e

at
ta

ck
in

U
ni

x
sy

st
em

s
al

lo
w

s
a

re
m

ot
e

at
ta

ck
er

to
pe

rf
or

m
a

de
ni

al
of

se
rv

ic
e

by
fil

lin
g

a
m

ac
hi

ne
’s

pr
oc

es
s

ta
bl

es
th

ro
ug

h
m

ul
tip

le
co

nn
ec

tio
ns

to
ne

tw
or

k
se

rv
ic

es
.

S
56

C
V

E
-1

99
9-

03
86

W
in

do
w

s
N

o
N

et
h

tt
p

d
2-

2-
1-

3
G

3
M

ic
ro

so
ft

P
er

so
na

lW
eb

S
er

ve
ra

nd
F

ro
nt

P
ag

e
P

er
so

na
lW

eb
S

er
ve

ri
n

so
m

e
W

in
do

w
s

sy
st

em
s

al
lo

w
s

a
re

m
ot

e
at

ta
ck

er
to

re
ad

fil
es

on
th

e
se

rv
er

by
us

in
g

a
no

ns
ta

nd
ar

d
U

R
L.

S
57

C
V

E
-1

99
9-

03
96

(m
)T

C
P

Y
es

S
ys

S
ta

ten
e

tin
e

t
2-

4-
2-

1
G

13
3

2
A

ra
ce

co
nd

iti
on

be
tw

ee
n

th
e

se
le

ct
()

an
d

ac
ce

pt
()

ca
lls

in
N

et
B

S
D

T
C

P
se

rv
er

s
al

lo
w

s
re

m
ot

e
at

ta
ck

-
er

s
to

ca
us

e
a

de
ni

al
of

se
rv

ic
e.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

135

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
58

C
V

E
-1

99
9-

04
04

W
in

do
w

s
N

o
2-

2-
1-

1
G

15
B

uf
fe

r
ov

er
flo

w
in

th
e

M
ai

l-M
ax

S
M

T
P

se
rv

er
fo

r
W

in
do

w
s

sy
st

em
s

al
lo

w
s

re
m

ot
e

co
m

m
an

d
ex

ec
u-

tio
n.

S
59

C
V

E
-1

99
9-

04
14

Li
nu

x
N

o
N

et
n

e
tin

e
t

2-
10

-2
-3

3
1

In
Li

nu
x

be
fo

re
ve

rs
io

n
2.

0.
36

,
re

m
ot

e
at

ta
ck

er
s

ca
n

sp
oo

f
a

T
C

P
co

nn
ec

tio
n

an
d

pa
ss

da
ta

to
th

e
ap

pl
ic

at
io

n
la

ye
r

be
fo

re
fu

lly
es

ta
bl

is
hi

ng
th

e
co

nn
ec

tio
n.

S
60

C
V

E
-1

99
9-

04
39

(m
)p

ro
cm

ai
l

N
o

N
et

,
U

se
r

p
ro

cm
a

il
2-

7-
2-

1
1

1

B
uf

fe
ro

ve
rfl

ow
in

pr
oc

m
ai

lb
ef

or
e

ve
rs

io
n

3.
12

al
lo

w
s

re
m

ot
e

or
lo

ca
la

tta
ck

er
s

to
ex

ec
ut

e
co

m
m

an
ds

vi
a

ex
pa

ns
io

ns
in

th
e

pr
oc

m
ai

lrc
co

nfi
gu

ra
tio

n
fil

e.
S

61
C

V
E

-1
99

9-
04

42
S

ol
ar

is
N

o
2-

1-
4-

1,
4

G
2,

G
7

S
ol

ar
is

ff.
co

re
al

lo
w

s
lo

ca
lu

se
rs

to
m

od
ify

fil
es

.
S

62
C

V
E

-1
99

9-
04

71
W

in
do

w
s

N
o

h
tt
p

d
3

G
3

T
he

re
m

ot
e

pr
ox

y
se

rv
er

in
W

in
ro

ut
e

al
lo

w
s

a
re

m
ot

e
at

ta
ck

er
to

re
co

nfi
gu

re
th

e
pr

ox
y

w
ith

ou
t

au
-

th
en

tic
at

io
n

th
ro

ug
h

th
e

ca
nc

el
bu

tto
n.

S
63

C
V

E
-1

99
9-

04
74

W
in

do
w

s
N

o
2-

12
-2

-2
G

22
T

he
IC

Q
W

eb
se

rv
er

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

us
e

..
to

ac
ce

ss
ar

bi
tr

ar
y

fil
es

ou
ts

id
e

of
th

e
us

er
’s

pe
rs

on
al

di
re

ct
or

y.
S

64
C

V
E

-1
99

9-
04

78
(m

)s
en

dm
ai

l
N

o
U

se
r

se
n

d
m

a
il

2-
2-

1-
1

1
1

D
en

ia
l-o

f-
S

er
vi

ce
at

ta
ck

us
in

g
ex

ce
ss

iv
el

y
lo

ng
he

ad
er

s,
or

a
ve

ry
la

rg
e

nu
m

be
r

of
th

em
.

S
65

C
V

E
-1

99
9-

04
84

O
pe

nB
S

D
N

o
U

se
r

p
in

g
3

2
1

B
uf

fe
r

ov
er

flo
w

in
O

pe
nB

S
D

pi
ng

.
S

66
C

V
E

-1
99

9-
05

13
(m

)I
C

M
P

Y
es

N
et

,
S

ys
S

ta
te

n
e

tin
e

t
4,

1
22

5

IC
M

P
m

es
sa

ge
s

to
br

oa
dc

as
t

ad
dr

es
se

s
ar

e
al

lo
w

ed
,

al
lo

w
in

g
fo

r
a

S
m

ur
f

at
ta

ck
th

at
ca

n
ca

us
e

a
de

ni
al

of
se

rv
ic

e.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

136

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
67

C
V

E
-1

99
9-

05
14

(m
)U

D
P

Y
es

N
et

,
S

ys
S

ta
te

n
e

tin
e

t
4,

1
12

5

U
D

P
m

es
sa

ge
s

to
br

oa
dc

as
t

ad
dr

es
se

s
ar

e
al

lo
w

ed
,

al
lo

w
in

g
fo

r
a

F
ra

gg
le

at
ta

ck
th

at
ca

n
ca

us
e

a
de

ni
al

of
se

rv
ic

e
by

flo
od

in
g

th
e

ta
rg

et
.

S
68

C
V

E
-1

99
9-

06
76

S
ol

ar
is

N
o

2-
12

-2
-1

G
19

,G
21

S
dt

cm
co

nv
er

ti
n

S
ol

ar
is

2.
6

al
lo

w
s

a
lo

ca
lu

se
r

to
ov

er
w

rit
e

se
ns

iti
ve

fil
es

vi
a

a
sy

m
lin

k
at

ta
ck

.
S

69
C

V
E

-1
99

9-
06

93
(m

)C
D

E
N

o
2-

3-
2-

1
G

6
B

uf
fe

r
ov

er
flo

w
in

T
T

S
E

S
S

IO
N

en
vi

ro
nm

en
t

va
ria

bl
e

in
To

ol
Ta

lk
sh

ar
ed

lib
ra

ry
al

lo
w

s
lo

ca
lu

se
rs

to
ga

in
ro

ot
pr

iv
ile

ge
s.

S
70

C
V

E
-1

99
9-

07
03

(m
)k

er
ne

l
N

o
F

ile
S

ys
ke

rn
1

2
2

O
pe

nB
S

D
,B

S
D

I,
an

d
ot

he
r

U
ni

x
op

er
at

in
g

sy
st

em
s

al
lo

w
us

er
s

to
se

tc
hfl

ag
s

an
d

fc
hfl

ag
s

on
ch

ar
ac

-
te

r
an

d
bl

oc
k

de
vi

ce
s.

S
71

C
V

E
-1

99
9-

07
04

(m
)a

m
d

N
o

A
pp

a
m

d
2-

2-
1-

1
4

2
B

uf
fe

r
ov

er
flo

w
in

B
er

ke
le

y
au

to
m

ou
nt

er
da

em
on

(a
m

d)
lo

gg
in

g
fa

ci
lit

y
pr

ov
id

ed
in

th
e

Li
nu

x
am

-
ut

ils
pa

ck
ag

e
an

d
ot

he
rs

.
S

72
C

V
E

-1
99

9-
07

08
(m

)c
fin

ge
rd

N
o

2-
6-

1-
1

G
10

B
uf

fe
r

ov
er

flo
w

in
cfi

ng
er

d
al

lo
w

s
lo

ca
lu

se
rs

to
ga

in
ro

ot
pr

iv
ile

ge
s

vi
a

a
lo

ng
G

E
C

O
S

fie
ld

.
S

73
C

V
E

-1
99

9-
07

10
(m

)s
qu

id
N

o
h

tt
p

d
4

G
3

T
he

R
ed

H
at

sq
ui

d
pr

og
ra

m
in

st
al

ls
ca

ch
em

gr
.c

gi
in

a
pu

bl
ic

w
eb

di
re

ct
or

y,
al

lo
w

in
g

re
m

ot
e

at
ta

ck
er

s
to

us
e

it
as

an
in

te
rm

ed
ia

ry
to

co
nn

ec
tt

o
ot

he
r

sy
st

em
s.

S
74

C
V

E
-1

99
9-

07
31

(m
)K

D
E

Y
es

P
ro

g
kd

e
3

3
3

T
he

K
D

E
kl

oc
k

pr
og

ra
m

al
lo

w
s

lo
ca

lu
se

rs
to

un
lo

ck
a

se
ss

io
n

us
in

g
m

al
fo

rm
ed

in
pu

t.
S

75
C

V
E

-1
99

9-
07

35
(m

)K
D

E
N

o
2-

12
-2

-1
G

19
,G

21
K

D
E

K
-M

ai
la

llo
w

s
lo

ca
lu

se
rs

to
ga

in
pr

iv
ile

ge
s

vi
a

a
sy

m
lin

k
at

ta
ck

in
te

m
po

ra
ry

us
er

di
re

ct
or

ie
s.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

137

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
76

C
V

E
-1

99
9-

07
44

(m
)F

as
tT

ra
ck

W
eb

S
er

ve
r

N
o

2-
2-

1-
1

G
12

B
uf

fe
r

ov
er

flo
w

in
N

et
sc

ap
e

E
nt

er
pr

is
e

S
er

ve
r

an
d

F
as

tT
ra

ck
S

er
ve

r
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ga

in
pr

iv
ile

ge
s

vi
a

a
lo

ng
H

T
T

P
G

E
T

re
qu

es
t.

S
77

C
V

E
-1

99
9-

07
46

(m
)in

et
d

N
o

N
et

,
P

ro
g

in
e

td
1,

4
4

1

A
de

fa
ul

t
co

nfi
gu

ra
tio

n
of

in
.id

en
td

in
S

uS
E

Li
nu

x
w

ai
ts

12
0

se
co

nd
s

be
tw

ee
n

re
qu

es
ts

,
al

lo
w

in
g

a
re

m
ot

e
at

ta
ck

er
to

co
nd

uc
ta

de
ni

al
of

se
rv

ic
e.

S
78

C
V

E
-1

99
9-

07
61

F
re

eB
S

D
N

o
F

ile
S

ys
g

e
n

2-
7-

1-
6

2
2

B
uf

fe
r

ov
er

flo
w

in
F

re
eB

S
D

fts
lib

ra
ry

ro
ut

in
es

al
lo

w
s

lo
ca

l
us

er
to

m
od

ify
ar

bi
tr

ar
y

fil
es

vi
a

th
e

pe
rio

di
c

pr
og

ra
m

.
S

79
C

V
E

-1
99

9-
07

63
N

et
B

S
D

N
o

N
et

,
S

ys
S

ta
te

n
e

tin
e

t
3

1
1

N
et

B
S

D
on

a
m

ul
ti-

ho
m

ed
ho

st
al

lo
w

s
A

R
P

pa
ck

et
s

on
on

e
ne

tw
or

k
to

m
od

ify
A

R
P

en
tr

ie
s

on
an

ot
he

r
co

nn
ec

te
d

ne
tw

or
k.

S
80

C
V

E
-1

99
9-

07
64

N
et

B
S

D
N

o
N

et
,

S
ys

S
ta

te
n

e
tin

e
t

3
1

1

N
et

B
S

D
al

lo
w

s
A

R
P

pa
ck

et
s

to
ov

er
w

rit
e

st
at

ic
A

R
P

en
tr

ie
s.

S
81

C
V

E
-1

99
9-

07
69

(m
)c

ro
nd

N
o

U
se

r
cr

o
n

2-
3-

2-
3

6
1

M
od

ifi
ca

tio
n

of
se

nd
m

ai
la

rg
um

en
ts

us
in

g
M

A
IL

T
O

in
a

cr
on

ta
b

fil
e.

S
82

C
V

E
-1

99
9-

07
71

W
in

do
w

s
N

o
2-

12
-2

-2
G

22
T

he
w

eb
co

m
po

ne
nt

s
of

C
om

pa
q

M
an

ag
em

en
tA

ge
nt

s
an

d
th

e
C

om
pa

q
S

ur
ve

y
U

til
ity

al
lo

w
a

re
m

ot
e

at
ta

ck
er

to
re

ad
ar

bi
tr

ar
y

fil
es

vi
a

a
..

(d
ot

do
t)

at
ta

ck
.

S
83

C
V

E
-1

99
9-

07
73

S
ol

ar
is

N
o

2-
5-

1-
1

G
1

B
uf

fe
r

ov
er

flo
w

in
S

ol
ar

is
lp

se
tp

ro
gr

am
al

lo
w

s
lo

ca
lu

se
rs

to
ga

in
ro

ot
ac

ce
ss

.
S

84
C

V
E

-1
99

9-
07

89
A

IX
N

o
2-

2-
1-

1
G

8
B

uf
fe

r
ov

er
flo

w
in

A
IX

ftp
d

in
th

e
lib

c
lib

ra
ry

.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

138

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
85

C
V

E
-1

99
9-

08
06

S
ol

ar
is

N
o

2-
5-

1-
1

G
1

B
uf

fe
r

ov
er

flo
w

in
S

ol
ar

is
dt

pr
in

tin
fo

pr
og

ra
m

.
S

86
C

V
E

-1
99

9-
08

34
(m

)r
sa

re
f

N
o

U
se

r
rs

a
re

f
2-

2-
1-

1
8

8
B

uf
fe

r
ov

er
flo

w
in

R
S

A
R

E
F

2
vi

a
th

e
en

cr
yp

tio
n

an
d

de
cr

yp
tio

n
fu

nc
tio

ns
in

th
e

R
S

A
R

E
F

lib
ra

ry
.

S
87

C
V

E
-1

99
9-

08
42

W
in

do
w

s
N

o
2-

12
-2

-2
G

22
S

ym
an

te
c

M
ai

l-G
ea

r
1.

0
w

eb
in

te
rf

ac
e

se
rv

er
al

lo
w

s
re

m
ot

e
us

er
s

to
re

ad
ar

bi
tr

ar
y

fil
es

vi
a

a
..

(d
ot

do
t)

at
ta

ck
.

S
88

C
V

E
-1

99
9-

08
59

S
ol

ar
is

N
o

F
ile

S
ys

a
rp

2-
12

-1
-1

1
1

S
ol

ar
is

ar
p

al
lo

w
s

lo
ca

lu
se

rs
to

re
ad

fil
es

vi
a

th
e

-f
pa

ra
m

et
er

,w
hi

ch
lis

ts
lin

es
in

th
e

fil
e

th
at

do
no

t
pa

rs
e

pr
op

er
ly

.
S

89
C

V
E

-1
99

9-
08

65
W

in
do

w
s

N
o

h
tt
p

d
2-

2-
1-

1
G

12
2

1
B

uf
fe

r
ov

er
flo

w
in

C
om

m
un

iG
at

eP
ro

vi
a

a
lo

ng
st

rin
g

to
th

e
H

T
T

P
co

nfi
gu

ra
tio

n
po

rt
.

S
90

C
V

E
-1

99
9-

08
93

S
C

O
O

pe
nS

er
ve

r
N

o
2-

12
-2

-1
G

19
,G

21
U

se
rO

sa
in

S
C

O
O

pe
nS

er
ve

r
al

lo
w

s
lo

ca
lu

se
rs

to
co

rr
up

tfi
le

s
vi

a
a

sy
m

lin
k

at
ta

ck
.

S
91

C
V

E
-1

99
9-

08
96

(m
)R

ea
lS

er
ve

r
N

o
h

tt
p

d
2-

2-
1-

1
2

1
B

uf
fe

r
ov

er
flo

w
in

R
ea

lN
et

w
or

ks
R

ea
lS

er
ve

r
ad

m
in

is
tr

at
io

n
ut

ili
ty

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

ex
ec

ut
e

ar
bi

tr
ar

y
co

m
m

an
ds

vi
a

a
lo

ng
us

er
na

m
e

an
d

pa
ss

w
or

d.
S

92
C

V
E

-1
99

9-
09

31
W

in
do

w
s

N
o

h
tt
p

d
2-

2-
1-

1
G

12
2

1
B

uf
fe

r
ov

er
flo

w
in

M
ed

ia
ho

us
e

S
ta

tis
tic

s
S

er
ve

r
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ex

ec
ut

e
co

m
m

an
ds

.
S

93
C

V
E

-1
99

9-
09

53
(m

)W
W

W
B

oa
rd

N
o

h
tt
p

d
4

G
3

W
W

W
B

oa
rd

st
or

es
en

cr
yp

te
d

pa
ss

w
or

ds
in

a
pa

ss
w

or
d

fil
e

th
at

is
un

de
r

th
e

w
eb

ro
ot

an
d

th
us

ac
ce

s-
si

bl
e

by
re

m
ot

e
at

ta
ck

er
s.

S
94

C
V

E
-1

99
9-

09
59

Ir
ix

N
o

2-
12

-2
-1

G
19

,G
21

IR
IX

st
ar

tm
id

ip
ro

gr
am

al
lo

w
s

lo
ca

lu
se

rs
to

m
od

ify
ar

bi
tr

ar
y

fil
es

vi
a

a
sy

m
lin

k
at

ta
ck

.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

139

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
95

C
V

E
-1

99
9-

09
69

W
in

do
w

s
N

o
N

et
n

e
tin

e
t

un
kn

ow
n

4
1

T
he

W
in

do
w

s
N

T
R

P
C

se
rv

ic
e

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

co
nd

uc
t

a
de

ni
al

of
se

rv
ic

e
us

in
g

sp
oo

fe
d

m
al

fo
rm

ed
R

P
C

pa
ck

et
s

w
hi

ch
ge

ne
ra

te
an

er
ro

r
m

es
sa

ge
th

at
is

se
nt

to
th

e
sp

oo
fe

d
ho

st
,p

ot
en

tia
lly

se
tti

ng
up

a
lo

op
,a

ka
S

no
rk

.
S

96
C

V
E

-1
99

9-
09

76
(m

)s
en

dm
ai

l
N

o
A

pp
,

S
ys

S
ta

te
se

n
d

m
a

il
2-

12
-1

-2
1

1

S
en

m
da

il
al

lo
w

s
us

er
s

to
re

in
iti

al
iz

e
th

e
al

ia
s

da
ta

ba
se

,t
he

n
co

rr
up

tt
he

al
ia

s
da

ta
ba

se
by

in
te

rr
up

tin
g

se
nd

m
ai

l.
S

97
C

V
E

-1
99

9-
09

86
(m

)I
P

N
o

S
ys

S
ta

ten
e

tin
e

t
2-

10
-2

-4
1

1
T

he
pi

ng
co

m
m

an
d

in
Li

nu
x

2.
0.

3x
al

lo
w

s
lo

ca
lu

se
rs

to
ca

us
e

a
de

ni
al

of
se

rv
ic

e
by

se
nd

in
g

la
rg

e
pa

ck
et

s
w

ith
th

e
-R

(r
ec

or
d

ro
ut

e)
op

tio
n.

S
98

C
V

E
-1

99
9-

09
96

W
in

do
w

s
N

o
h

tt
p

d
2-

2-
1-

1
G

12
2

1
B

uf
fe

r
ov

er
flo

w
in

In
fo

se
ek

U
ltr

as
ee

k
se

ar
ch

en
gi

ne
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ex

ec
ut

e
co

m
m

an
ds

vi
a

a
lo

ng
G

E
T

re
qu

es
t.

S
99

C
V

E
-1

99
9-

10
10

(m
)s

sh
N

o
U

se
r

ss
h

3
5

3
A

n
S

S
H

1.
2.

27
se

rv
er

al
lo

w
s

a
cl

ie
nt

to
us

e
th

e
“n

on
e”

ci
ph

er
,

ev
en

if
it

is
no

ta
llo

w
ed

by
th

e
se

rv
er

po
lic

y.
S

10
0

C
V

E
-2

00
0-

00
03

U
ni

xW
ar

e
N

o
2-

3-
2-

1
G

6
B

uf
fe

r
ov

er
flo

w
in

U
ni

xW
ar

e
rt

pm
pr

og
ra

m
al

lo
w

s
lo

ca
lu

se
rs

to
ga

in
pr

iv
ile

ge
s

vi
a

a
lo

ng
en

vi
ro

n-
m

en
ta

lv
ar

ia
bl

e.
S

10
1

C
V

E
-2

00
0-

00
11

W
in

do
w

s
N

o
2-

2-
1-

1
G

12
B

uf
fe

r
ov

er
flo

w
in

A
na

lo
gX

S
im

pl
eS

er
ve

r:
W

W
W

H
T

T
P

se
rv

er
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ex

ec
ut

e
co

m
m

an
ds

vi
a

a
lo

ng
G

E
T

re
qu

es
t.

S
10

2
C

V
E

-2
00

0-
00

14
W

in
do

w
s

N
o

h
tt
p

d
2-

2-
1-

3
G

3
D

en
ia

lo
fs

er
vi

ce
in

S
av

an
tw

eb
se

rv
er

vi
a

a
nu

ll
ch

ar
ac

te
r

in
th

e
re

qu
es

te
d

U
R

L.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

140

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
10

3
C

V
E

-2
00

0-
00

15
A

sc
en

d
C

as
ca

de
-

V
ie

w
N

o
2-

12
-2

-1
G

19
,G

21

C
as

ca
de

V
ie

w
T

F
T

P
se

rv
er

al
lo

w
s

lo
ca

lu
se

rs
to

ga
in

pr
iv

ile
ge

s
vi

a
a

sy
m

lin
k

at
ta

ck
.

S
10

4
C

V
E

-2
00

0-
00

29
U

ni
xW

ar
e

N
o

2-
12

-2
-1

G
19

,G
21

U
ni

xW
ar

e
pi

s
an

d
m

kp
is

co
m

m
an

ds
al

lo
w

lo
ca

lu
se

rs
to

ga
in

pr
iv

ile
ge

s
vi

a
a

sy
m

lin
k

at
ta

ck
.

S
10

5
C

V
E

-2
00

0-
00

51
(m

)A
lla

ire
S

pe
c-

tr
a

N
o

h
tt
p

d
4

G
3

T
he

A
lla

ire
S

pe
ct

ra
C

on
fig

ur
at

io
n

W
iz

ar
d

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

ca
us

e
a

de
ni

al
of

se
rv

ic
e

by
re

pe
at

ed
ly

re
su

bm
itt

in
g

da
ta

co
lle

ct
io

ns
fo

r
in

de
xi

ng
vi

a
a

U
R

L.
S

10
6

C
V

E
-2

00
0-

01
44

A
xi

s
N

et
w

or
k

D
oc

um
en

tS
er

ve
r

N
o

2-
12

-2
-2

G
22

A
xi

s
70

0
N

et
w

or
k

S
ca

nn
er

do
es

no
t

pr
op

er
ly

re
st

ric
t

ac
ce

ss
to

ad
m

in
is

tr
at

or
U

R
Ls

,
w

hi
ch

al
lo

w
s

us
er

s
to

by
pa

ss
th

e
pa

ss
w

or
d

pr
ot

ec
tio

n
vi

a
a

..
(d

ot
do

t)
at

ta
ck

.
S

10
7

C
V

E
-2

00
0-

01
48

(m
)M

yS
Q

L
N

o
U

se
r

m
ys

q
l

2-
2-

1-
2

1
1

M
yS

Q
L

3.
22

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

by
pa

ss
pa

ss
w

or
d

au
th

en
tic

at
io

n
an

d
ac

ce
ss

a
da

ta
ba

se
vi

a
a

sh
or

tc
he

ck
st

rin
g.

S
10

8
C

V
E

-2
00

0-
01

65
(m

)D
el

eg
at

e
N

o
h

tt
p

d
2-

2-
1-

1
G

3
T

he
D

el
eg

at
e

ap
pl

ic
at

io
n

pr
ox

y
ha

s
se

ve
ra

lb
uf

fe
r

ov
er

flo
w

s
w

hi
ch

al
lo

w
a

re
m

ot
e

at
ta

ck
er

to
ex

ec
ut

e
co

m
m

an
ds

.
S

10
9

C
V

E
-2

00
0-

01
69

W
in

do
w

s
N

o
h

tt
p

d
2-

2-
1-

4
G

3
B

at
ch

fil
es

in
th

e
O

ra
cl

e
w

eb
lis

te
ne

r
ow

s-
bi

n
di

re
ct

or
y

al
lo

w
re

m
ot

e
at

ta
ck

er
s

to
ex

ec
ut

e
co

m
m

an
ds

vi
a

a
m

al
fo

rm
ed

U
R

L
th

at
in

cl
ud

es
’?

&
’.

S
11

0
C

V
E

-2
00

0-
01

70
Li

nu
x

N
o

U
se

r
m

a
n

2-
3-

2-
1

G
6

6
1

B
uf

fe
ro

ve
rfl

ow
in

th
e

m
an

pr
og

ra
m

in
Li

nu
x

al
lo

w
s

lo
ca

lu
se

rs
to

ga
in

pr
iv

ile
ge

s
vi

a
th

e
M

A
N

P
A

G
E

R
en

vi
ro

nm
en

ta
lv

ar
ia

bl
e.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

141

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
11

1
C

V
E

-2
00

0-
01

74
(m

)S
ta

rO
ffi

ce
N

o
2-

12
-2

-2
G

22
S

ta
rO

ffi
ce

S
ta

rS
ch

ed
ul

er
w

eb
se

rv
er

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

re
ad

ar
bi

tr
ar

y
fil

es
vi

a
a

..
(d

ot
do

t)
at

ta
ck

.
S

11
2

C
V

E
-2

00
0-

01
75

(m
)S

ta
rO

ffi
ce

N
o

h
tt
p

d
2-

2-
1-

1
G

12
2

1
B

uf
fe

r
ov

er
flo

w
in

S
ta

rO
ffi

ce
S

ta
rS

ch
ed

ul
er

w
eb

se
rv

er
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ga

in
ro

ot
ac

ce
ss

vi
a

a
lo

ng
G

E
T

co
m

m
an

d.
S

11
3

C
V

E
-2

00
0-

02
08

(m
)h

td
ig

N
o

h
tt
p

d
2-

2-
1-

4
G

3
T

he
ht

di
g

(h
t:/

/D
ig

)
C

G
Ip

ro
gr

am
ht

se
ar

ch
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
re

ad
ar

bi
tr

ar
y

fil
es

by
en

cl
os

in
g

th
e

fil
e

na
m

e
w

ith
ba

ck
tic

ks
(‘)

in
pa

ra
m

et
er

s
to

ht
se

ar
ch

.
S

11
4

C
V

E
-2

00
0-

02
10

S
ol

ar
is

N
o

2-
12

-2
-1

G
19

,G
21

T
he

lit
pr

og
ra

m
in

S
un

F
le

x
Li

ce
ns

e
M

an
ag

er
(F

le
xL

M
)

fo
llo

w
s

sy
m

lin
ks

,
w

hi
ch

al
lo

w
s

lo
ca

lu
se

rs
to

m
od

ify
ar

bi
tr

ar
y

fil
es

.
S

11
5

C
V

E
-2

00
0-

02
21

N
or

te
l

N
et

w
or

ks
N

au
tic

a
R

ou
te

r
N

o
n

e
tin

e
t

2-
10

-2
-1

3
1

T
he

N
au

tic
a

M
ar

lin
br

id
ge

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

ca
us

e
a

de
ni

al
of

se
rv

ic
e

vi
a

a
ze

ro
le

ng
th

U
D

P
pa

ck
et

to
th

e
S

N
M

P
po

rt
.

S
11

6
C

V
E

-2
00

0-
02

60
W

in
do

w
s

N
o

h
tt
p

d
2-

2-
1-

1
G

3
B

uf
fe

r
ov

er
flo

w
in

th
e

dv
w

ss
r.d

ll
D

LL
in

M
ic

ro
so

ft
V

is
ua

lI
nt

er
de

v
1.

0
al

lo
w

s
us

er
s

to
ca

us
e

a
de

ni
al

of
se

rv
ic

e
or

ex
ec

ut
e

co
m

m
an

ds
,a

ka
th

e
“L

in
k

V
ie

w
S

er
ve

r-
S

id
e

C
om

po
ne

nt
”

vu
ln

er
ab

ili
ty

.
S

11
7

C
V

E
-2

00
0-

02
62

W
in

do
w

s
N

o
2-

12
-2

-2
G

22
T

he
AV

M
K

E
N

!
IS

D
N

P
ro

xy
se

rv
er

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

ca
us

e
a

de
ni

al
of

se
rv

ic
e

vi
a

a
m

al
-

fo
rm

ed
re

qu
es

t.
S

11
8

C
V

E
-2

00
0-

02
79

B
eO

S
N

o
N

et
n

e
tin

e
t

2-
10

-2
-1

3
1

B
eO

S
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ca

us
e

a
de

ni
al

of
se

rv
ic

e
vi

a
m

al
fo

rm
ed

pa
ck

et
s

w
ho

se
le

ng
th

fie
ld

is
le

ss
th

an
th

e
le

ng
th

of
th

e
he

ad
er

s.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

142

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
11

9
C

V
E

-2
00

0-
03

37
S

ol
ar

is
N

o
U

se
r

X
1

1
2-

5-
1-

1
G

1
4

1
B

uf
fe

r
ov

er
flo

w
in

X
su

n
X

se
rv

er
in

S
ol

ar
is

7
al

lo
w

s
lo

ca
lu

se
rs

to
ga

in
ro

ot
pr

iv
ile

ge
s

vi
a

a
lo

ng
-d

ev
pa

ra
m

et
er

.
S

12
0

C
V

E
-2

00
0-

03
50

W
in

do
w

s
N

o
N

et
h

tt
p

d
4

2
1

A
de

bu
gg

in
g

fe
at

ur
e

in
N

et
w

or
kI

C
E

IC
E

ca
p

2.
0.

23
an

d
ea

rli
er

is
en

ab
le

d,
w

hi
ch

al
lo

w
s

a
re

m
ot

e
at

ta
ck

er
to

by
pa

ss
th

e
w

ea
k

au
th

en
tic

at
io

n
an

d
po

st
un

en
cr

yp
te

d
ev

en
ts

.
S

12
1

C
V

E
-2

00
0-

03
91

(m
)K

er
be

ro
s5

N
o

2-
5-

1-
1

G
1

B
uf

fe
r

ov
er

flo
w

in
kr

sh
d

in
K

er
be

ro
s

5
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ga

in
ro

ot
pr

iv
ile

ge
s.

S
12

2
C

V
E

-2
00

0-
03

92
(m

)K
er

be
ro

s5
N

o
2-

5-
1-

1
G

1
B

uf
fe

r
ov

er
flo

w
in

ks
u

in
K

er
be

ro
s

5
al

lo
w

s
lo

ca
lu

se
rs

to
ga

in
ro

ot
pr

iv
ile

ge
s.

S
12

3
C

V
E

-2
00

0-
03

97
W

in
do

w
s

N
o

h
tt
p

d
1

G
3

T
he

E
M

U
R

L
w

eb
-b

as
ed

em
ai

la
cc

ou
nt

so
ftw

ar
e

en
co

de
s

pr
ed

ic
ta

bl
e

id
en

tifi
er

s
in

us
er

se
ss

io
n

U
R

Ls
,

w
hi

ch
al

lo
w

s
a

re
m

ot
e

at
ta

ck
er

to
ac

ce
ss

a
us

er
’s

em
ai

la
cc

ou
nt

.
S

12
4

C
V

E
-2

00
0-

04
05

(m
)A

nt
iS

ni
ff

N
o

N
et

a
n

tis
n

iff
2-

6-
1-

1
2

2
B

uf
fe

r
ov

er
flo

w
in

L0
ph

tA
nt

iS
ni

ff
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ex

ec
ut

e
ar

bi
tr

ar
y

co
m

m
an

ds
vi

a
a

m
al

-
fo

rm
ed

D
N

S
re

sp
on

se
pa

ck
et

.
S

12
5

C
V

E
-2

00
0-

04
08

W
in

do
w

s
N

o
h

tt
p

d
2-

7-
1-

2
G

3
IIS

4.
05

an
d

5.
0

al
lo

w
re

m
ot

e
at

ta
ck

er
s

to
ca

us
e

a
de

ni
al

of
se

rv
ic

e
vi

a
a

lo
ng

,
co

m
pl

ex
U

R
L

th
at

ap
pe

ar
s

to
co

nt
ai

n
a

la
rg

e
nu

m
be

r
of

fil
e

ex
te

ns
io

ns
,

ak
a

th
e

M
al

fo
rm

ed
E

xt
en

si
on

D
at

a
in

U
R

L
vu

ln
er

ab
ili

ty
.

S
12

6
C

V
E

-2
00

0-
04

11
(m

)F
or

m
M

ai
l

N
o

h
tt
p

d
1

G
3

M
at

tW
rig

ht
’s

F
or

m
M

ai
lC

G
Is

cr
ip

ta
llo

w
s

re
m

ot
e

at
ta

ck
er

s
to

ob
ta

in
en

vi
ro

nm
en

ta
lv

ar
ia

bl
es

vi
a

th
e

en
v

re
po

rt
pa

ra
m

et
er

.
S

12
7

C
V

E
-2

00
0-

04
18

C
ay

m
an

N
o

2-
10

-2
-4

G
11

T
he

C
ay

m
an

32
20

-H
D

S
L

ro
ut

er
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ca

us
e

a
de

ni
al

of
se

rv
ic

e
vi

a
ov

er
si

ze
d

IC
M

P
ec

ho
(p

in
g)

re
qu

es
ts

.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

143

Ta
bl

e
A

.1
:

Li
st

of
sp

ec
ifi

c
de

te
ct

or
s

im
pl

em
en

te
d

(c
on

tin
ue

d)
.

N
ID

Vu
ln

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

S
12

8
C

V
E

-2
00

0-
04

36
W

in
do

w
s

N
o

2-
12

-2
-2

G
22

M
et

aP
ro

du
ct

s
O

ffl
in

e
E

xp
lo

re
r

1.
2

an
d

ea
rli

er
al

lo
w

s
re

m
ot

e
at

ta
ck

er
s

to
ac

ce
ss

ar
bi

tr
ar

y
fil

es
vi

a
a

..
(d

ot
do

t)
at

ta
ck

.
S

12
9

C
V

E
-2

00
0-

04
53

(m
)X

F
re

e8
6

N
o

N
et

X
1

1
2-

2-
1-

2
2

1
X

F
re

e8
6

3.
3.

x
an

d
4.

0
al

lo
w

s
a

us
er

to
ca

us
e

a
de

ni
al

of
se

rv
ic

e
vi

a
a

ne
ga

tiv
e

co
un

te
r

va
lu

e
in

a
m

al
fo

rm
ed

T
C

P
pa

ck
et

th
at

is
se

nt
to

po
rt

60
00

.
S

13
0

C
V

E
-2

00
0-

04
60

(m
)K

D
E

N
o

2-
3-

2-
1

G
6

B
uf

fe
r

ov
er

flo
w

in
K

D
E

kd
es

ud
on

Li
nu

x
al

lo
w

s
lo

ca
lu

se
s

to
ga

in
pr

iv
ile

ge
s

vi
a

a
lo

ng
D

IS
P

LA
Y

en
vi

ro
nm

en
ta

lv
ar

ia
bl

e.

144

Ta
bl

e
A

.2
:

Li
st

of
ge

ne
ric

de
te

ct
or

s
im

pl
em

en
te

d.

N
ID

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

G
1

E
S

P
-A

R
G

S
-L

E
N

N
o

U
se

r
ke

rn
2-

5-
1-

1
2

1
G

en
er

at
e

an
al

er
tw

he
n

an
y

co
m

m
an

d
ar

gu
m

en
ti

s
lo

ng
er

th
an

a
ce

rt
ai

n
le

ng
th

.
G

2
E

S
P

-B
A

D
M

O
D

E
-R

O
O

T-
F

IL
E

N
o

F
ile

S
ys

u
fs

n/
a

7
4

G
en

er
at

e
an

al
er

tw
he

n
a

ro
ot

-o
w

ne
d

fil
e

be
co

m
es

w
or

ld
-w

rit
ab

le
,S

U
ID

or
S

G
ID

.
G

3
E

S
P

-B
A

D
U

R
LS

N
o

N
et

h
tt
p

d
n/

a
40

2
G

en
er

ic
de

te
ct

or
fo

r
at

ta
ck

s
ba

se
d

on
sp

ec
ifi

c
U

R
Ls

an
d

fo
r

U
R

L-
ba

se
d

bu
ffe

r
ov

er
flo

w
s.

G
4

E
S

P
-B

O
O

T
N

o
S

ys
S

ta
te

ke
rn

n/
a

1
1

G
en

er
at

e
a

m
es

sa
ge

ev
er

y
tim

e
th

e
sy

st
em

bo
ot

.
G

5
E

S
P

-C
O

LL
E

C
T-

A
R

G
-E

N
V

-D
AT

A
Y

es
S

ys
S

ta
te

ke
rn

n/
a

26
5

C
ol

le
ct

s
an

d
re

po
rt

s
m

ax
im

um
an

d
av

er
ag

e
le

ng
th

of
co

m
m

an
d

ar
gu

m
en

ts
an

d
en

vi
ro

nm
en

tv
ar

ia
bl

es
se

en
so

fa
r.

It
al

so
re

po
rt

s
th

e
nu

m
be

r
of

el
em

en
ts

of
ea

ch
ty

pe
in

cl
ud

ed
in

th
e

m
ea

su
re

m
en

t.
G

6
E

S
P

-E
N

V
-L

E
N

N
o

S
ys

S
ta

te
ke

rn
2-

3-
2-

1
6

1
G

en
er

at
e

an
al

er
tw

he
n

an
y

en
vi

ro
nm

en
tv

ar
ia

bl
e

is
lo

ng
er

th
an

a
ce

rt
ai

n
le

ng
th

.
G

7
E

S
P

-F
IL

E
-I

N
T

E
G

R
IT

Y
N

o
F

ile
S

ys
ke

rn
n/

a
D

et
ec

to
r

th
at

m
on

ito
rs

fil
e

in
te

gr
ity

an
d

tr
ig

ge
rs

w
he

n
a

m
on

ito
re

d
fil

e
is

m
od

ifi
ed

.
G

8
E

S
P

-F
T

P
-C

M
D

-O
V

E
R

F
LO

W
N

o
U

se
r

ft
p

d
2-

2-
1-

1
4

1
G

en
er

at
e

an
al

er
tw

he
n

an
F

T
P

co
m

m
an

d
is

re
ce

iv
ed

th
at

is
to

o
lo

ng
or

th
at

co
nt

ai
ns

in
va

lid
ch

ar
ac

te
rs

.
G

9
E

S
P

-G
E

T
N

A
M

E
IN

F
O

N
o

N
et

n
e

t
2-

6-
1-

1
1

1
D

et
ec

to
r

fo
r

ho
st

na
m

e-
ba

se
d

bu
ffe

r
ov

er
flo

w
at

ta
ck

s.
G

10
E

S
P

-L
O

N
G

G
E

C
O

S
N

o
S

ys
S

ta
teg

e
n

2-
6-

1-
1

2
1

G
en

er
at

e
an

al
er

tw
he

n
th

e
G

E
C

O
S

fie
ld

in
a

us
er

en
tr

y
is

lo
ng

er
th

an
a

ce
rt

ai
n

th
re

sh
ol

d.
G

11
E

S
P

-L
O

N
G

IC
M

P
N

o
N

et
n

e
tin

e
t

2-
10

-2
-4

3
1

D
et

ec
to

r
th

at
ge

ne
ra

te
s

an
al

er
tw

he
n

an
IC

M
P

pa
ck

et
is

re
ce

iv
ed

th
at

is
ov

er
a

ce
rt

ai
n

le
ng

th
.

G
12

E
S

P
-L

O
N

G
U

R
L

N
o

N
et

h
tt
p

d
2-

2-
1-

1
2

1
G

en
er

ic
de

te
ct

or
fo

r
at

ta
ck

s
ba

se
d

on
se

nd
in

g
ex

tr
em

el
y

lo
ng

U
R

Ls
to

a
w

eb
se

rv
er

.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

145

Ta
bl

e
A

.2
:

Li
st

of
ge

ne
ric

de
te

ct
or

s
im

pl
em

en
te

d
(c

on
tin

ue
d)

.

N
ID

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

G
13

E
S

P
-P

O
R

T
S

C
A

N
Y

es
N

et
,

S
ys

S
ta

te
n

e
tin

e
t

n/
a

15
1

9

D
iff

er
en

tt
yp

es
of

T
C

P
po

rt
sc

an
ni

ng
,i

nc
lu

di
ng

fu
ll

sc
an

s,
S

Y
N

sc
an

s,
F

IN
,X

M
A

S
an

d
N

U
LL

sc
an

s.
G

14
E

S
P

-S
H

U
T

D
O

W
N

N
o

S
ys

S
ta

te
ke

rn
n/

a
5

1
G

en
er

at
e

a
m

es
sa

ge
ev

er
y

tim
e

th
e

sy
st

em
sh

ut
s

do
w

n.
G

15
E

S
P

-S
M

T
P

-C
M

D
-O

V
E

R
F

LO
W

N
o

N
et

se
n

d
m

a
il

2-
2-

1-
1

2
1

D
et

ec
ta

tte
m

pt
s

at
bu

ffe
r

ov
er

flo
w

at
ta

ck
s

on
S

M
T

P
co

m
m

an
ds

se
nt

to
se

nd
m

ai
l.

G
16

E
S

P
-S

Y
M

LI
N

K
-C

H
M

O
D

N
o

A
pp

,
F

ile
S

ys
ke

rn
2-

7-
1-

5
G

21
2

1

D
et

ec
ta

tte
m

pt
s

at
ch

an
gi

ng
th

e
pe

rm
is

si
on

s
(u

si
ng

th
e

ch
m

od
()

sy
st

em
ca

ll)
of

a
fil

e
th

ro
ug

h
a

sy
m

lin
k

in
a

pu
bl

ic
di

re
ct

or
y.

G
17

E
S

P
-S

Y
M

LI
N

K
-C

H
O

W
N

N
o

A
pp

,
F

ile
S

ys
ke

rn
2-

7-
1-

5
G

21
2

1

D
et

ec
t

at
te

m
pt

s
at

ch
an

gi
ng

th
e

ow
ne

r
or

gr
ou

p
(u

si
ng

th
e

ch
ow

n(
)

sy
st

em
ca

ll)
of

a
fil

e
th

ro
ug

h
a

sy
m

lin
k

in
a

pu
bl

ic
di

re
ct

or
y.

G
18

E
S

P
-S

Y
M

LI
N

K
-C

O
N

N
E

C
T

N
o

F
ile

S
ys

ke
rn

2-
7-

1-
5

G
21

2
1

D
et

ec
ta

tte
m

pt
s

at
co

nn
ec

tin
g

to
a

U
N

IX
so

ck
et

(u
si

ng
th

e
co

nn
ec

t(
)

sy
st

em
ca

ll)
th

at
is

a
sy

m
lin

k
in

a
pu

bl
ic

di
re

ct
or

y.
G

19
E

S
P

-S
Y

M
LI

N
K

-O
P

E
N

N
o

A
pp

,
F

ile
S

ys
ke

rn
2-

7-
1-

5,
2-

12
-2

-1
G

21
2

1

D
et

ec
ta

tte
m

pt
s

to
op

en
fil

es
fo

r
w

rit
in

g
or

cr
ea

tin
g

in
si

de
so

m
e

w
or

ld
-w

rit
ab

le
di

re
ct

or
ie

s,
w

he
n

th
e

fil
e

al
re

ad
y

ex
is

ts
an

d
is

a
sy

m
bo

lic
lin

k.
G

20
E

S
P

-T
C

P
-D

R
O

P
P

E
D

-P
A

C
K

E
T

S
N

o
S

ys
S

ta
tene

tin
e

t
n/

a
1

1
A

de
te

ct
or

th
at

tr
ig

ge
rs

w
he

n
an

in
co

m
in

g
T

C
P

pa
ck

et
is

dr
op

pe
d

fo
r

an
y

re
as

on
.

G
21

E
S

P
-T

M
P

-S
Y

M
LI

N
K

N
o

F
ile

S
ys

ke
rn

2-
7-

1-
5,

2-
12

-2
-1

2
1

G
en

er
at

e
an

al
er

tw
he

n
a

sy
m

lin
k

in
a

te
m

po
ra

ry
di

re
ct

or
y

is
ac

ce
ss

ed
fo

r
an

y
re

as
on

.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

146

Ta
bl

e
A

.2
:

Li
st

of
ge

ne
ric

de
te

ct
or

s
im

pl
em

en
te

d
(c

on
tin

ue
d)

.

N
ID

S
S

rc
D

ir
C

la
ss

D
et

Im
p

E
B

G
22

E
S

P
-U

R
I-

D
O

T
D

O
T

N
o

h
tt
p

d
2-

2-
1-

3,
2-

12
-2

-2
G

3

U
se

of
”.

./”
in

U
R

Ls
to

ac
ce

ss
fil

es
ou

ts
id

e
th

e
no

rm
al

sp
ac

e
of

w
eb

do
cu

m
en

ts
.

G
23

E
S

P
-U

R
I-

N
O

P
S

N
o

h
tt
p

d
2-

2-
1-

1
G

3
P

re
se

nc
e

of
N

O
P

ch
ar

ac
te

rs
in

an
ht

tp
re

qu
es

t,
w

hi
ch

is
us

ua
lly

a
si

gn
of

a
bu

ffe
r

ov
er

flo
w

at
te

m
pt

.

147

Appendix B: The ESP Library

The ESP library (libesp) was developed to provide a central wrapper around sev-

eral functions that can be useful for embedded detectors and programs that read their

messages. The functions in the library (except for theesp log() system call and the

esp logf() function) are only available to user-level processes because a library cannot

be linked against the Unix kernel.

The following functions exist in the current version of the ESP library:

esp log: This is the direct interface to theesp log system call. It takes a string pointer

as argument and writes it to the message buffer.

esp logf: Interface to theesp log system call that knows how to handle format strings

so that variable data can be written to the message buffer.

espopen: Opens the/dev/esplog device for reading, so that a process can read mes-

sages produced by detectors.

espclose: Closes the/dev/esplog device.

espgets: Reads the next message from the/dev/esplog device. In the current im-

plementation, detector messages are produced as lines of ASCII text. However this

interpretation may change in the future.

espmatch char: This utility function performs a character-by-character comparison against

a pattern. It is used by several detectors to perform comparisons needed to detect spe-

cific buffer overflow attacks.

espcount char: Counts how many times a specific character occurs in a string. It is used

mostly throughesp count nops() .

espcount nops: Counts the number of times the code for a NOP operation occurs in a

string. NOP codes almost invariable occur in strings that are intended to cause a

buffer overflow. Their occurrence is used as a strong heuristic for detecting some

attacks.

esp longest char seq: Returns the length of the longest contiguous sequence of a specific

character that appears in a string.

148

espstrcasestr: Similar to the standardstrstr() function, it looks for the occurrence of

a string inside another, but it does the search in a case-insensitive manner.

espstrhead: It returns a buffer containing the “head” of a given string, up to a length

specified by the user.

espcheck path level: Determines if a given path will try to go past the root directory

when considered relative to a specific directory.

esppath level: Counts the level (starting with zero for the root directory) at which a given

path will end up when considered relative to a specific directory.

149

Appendix C: A Taxonomy of Software Vulnerabilities

The taxonomy of software vulnerabilities proposed by Krsul [78] is used in this disser-

tation as one mechanism for classifying detectors and attacks. The categories used in this

dissertation are listed in Table C.1 for reference. The classes listedin italics correspond

to classes added to this taxonomy during the development of the ESP prototype, and are

described in Section 4.13.6. A full listing and description of the taxonomy is outside the

scope of this document but can be found in its original source.

Table C.1: Categories from the Krsul taxonomy used in this dissertation.

(1) Design faults
(2) Environmental assumptions

(2-1) Running
program

(2-1-3) Environment (2-1-3-1) issystem() safe

(2-1-4) User running
the program

(2-1-4-1) user is root or administrator

(2-2) User input (2-2-1) Content (2-2-1-1) is at most x
(2-2-1-3) matches regular expression
(2-2-1-4) is free of shell metacharacters

(2-3) Environment
variable

(2-3-2) Content (2-3-2-1) length is at most x

(2-3-2-3) matches regular expression
(2-4) Network

stream
(2-4-1) Content (2-4-1-1) is at most x

(2-4-1-4)matches a regular expression
(2-4-2)Socket (2-4-2-1)is the same object as x

(2-5) Command
line parameters

(2-5-1) Content (2-5-1-1) length is at most x

(2-6) System
library

(2-6-1) Return (2-6-1-1) length is at most x

(2-7) File (2-7-1) Name (2-7-1-2) is a valid file name
(2-7-1-4) is the same object as x
(2-7-1-5) is final
(2-7-1-6)length is at most x

(2-7-2) Content (2-7-2-1) length is at most x
(2-7-2-3) is a known program
(2-7-2-5) is of a known type

(2-8) Directory (2-8-1) Name (2-8-1-1) length is at least x
(2-9) Program

string
(2-9-1) Content (2-9-1-3) is free of shell metacharacters

(2-10) Network
IP packets

(2-10-1) Source
address

(2-10-1-1)is different than destination address

(continued on next page)

150

Table C.1: Categories from the Krsul taxonomy used in this dissertation (continued).

(2-10-2) Data
segment

(2-10-2-1) length is at least x

(2-10-2-2)is a proper fragment
(2-10-2-3) corresponds to a fully established
connection
(2-10-2-4)length is at most x

(2-10-4)TCP seq.
number

(2-10-4-1)is in proper sequence

(2-11) Directory,
running
program

(2-11-1) Dir. name,
running program
privileges, name of
user that ran
the program

(2-11-1-1) is in valid user space for the user that
invoked the program.

(2-11-1-3) user that invoked the program can
create files in the directory

(2-12) File,
running
program

(2-12-1) File perms.,
running program
privileges, user that
ran the program

(2-12-1-1) User that invoked the program can
read the file

(2-12-1-2) User that invoked the program can
write to the file

(2-12-2) File name,
running program
privileges, user that
ran the program

(2-12-2-1) is a valid temporary file

(2-12-2-2) is in valid user space for the user that
invoked the program.

(3) Coding faults
(4) Configuration errors

VITA

151

VITA

Diego Zamboni was born on December 3, 1970 in Corrientes, Argentina. He received

his Bachelor’s Degree in Computer Engineering from the National Autonomous University

of Mexico (UNAM) in 1995, and his Masters Degree in Computer Science from Purdue

University in 1998. While at UNAM, he was in charge of the security for the Unix ma-

chines at the Supercomputing Department. He also established the University’s Computer

Security Area, one of the first Computer Security Incident Response Teams in Mexico. In

July of 2001, he was awarded the first Josef Raviv Memorial Postdoctoral Fellowship from

IBM.

